Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(2): e2215509119, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36608295

RESUMO

Recently, Co-based honeycomb magnets have been proposed as promising candidate materials to host the Kitaev spin liquid (KSL) state. One of the front-runners is BaCo2(AsO4)2 (BCAO), where it was suggested that the exchange processes between Co2+ ions via the surrounding edge-sharing oxygen octahedra could give rise to bond-dependent Kitaev interactions. In this work, we present and analyze a comprehensive inelastic neutron scattering (INS) study of BCAO with fields in the honeycomb plane. Combining the constraints from the magnon excitations in the high-field polarized state and the inelastic spin structure factor measured in zero magnetic field, we examine two leading theoretical models: the Kitaev-type [Formula: see text] model and the XXZ[Formula: see text]model. We show that the existing experimental data can be consistently accounted for by the XXZ[Formula: see text]model but not by the [Formula: see text] model, and we discuss the implications of these results for the realization of a spin liquid phase in BCAO and more generally for the realization of the Kitaev model in cobaltates.

2.
Eur J Inorg Chem ; 2019(8)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715932

RESUMO

Neutron diffraction and spectroscopy offer unique insight into structures and properties of solids and molecular materials. All neutron instruments located at the various neutron sources are distinct, even if their designs are based on similar principles, and thus, they are usually less familiar to the community than commercial X-ray diffractometers and optical spectrometers. Major neutron instruments in the USA, which are open to scientists around the world, and examples of their use in coordination chemistry research are presented here, along with a list of similar instruments at main neutron facilities in other countries. The reader may easily and quickly find from this minireview an appropriate neutron instrument for research. The instruments include single-crystal and powder diffractometers to determine structures, inelastic neutron scattering (INS) spectrometers to probe magnetic and vibrational excitations, and quasielastic neutron scattering (QENS) spectrometers to study molecular dynamics such as methyl rotation on ligands. Key and unique features of the diffraction and neutron spectroscopy that are relevant to inorganic chemistry are reviewed.

3.
Phys Rev Lett ; 127(11): 117201, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558925

RESUMO

Understanding magnetism and its possible correlations to topological properties has emerged to the forefront as a difficult topic in studying magnetic Weyl semimetals. Co_{3}Sn_{2}S_{2} is a newly discovered magnetic Weyl semimetal with a kagome lattice of cobalt ions and has triggered intense interest for rich fantastic phenomena. Here, we report the magnetic exchange couplings of Co_{3}Sn_{2}S_{2} using inelastic neutron scattering and two density functional theory (DFT) based methods: constrained magnetism and multiple-scattering Green's function methods. Co_{3}Sn_{2}S_{2} exhibits highly anisotropic magnon dispersions and linewidths below T_{C}, and paramagnetic excitations above T_{C}. The spin-wave spectra in the ferromagnetic ground state is well described by the dominant third-neighbor "across-hexagon" J_{d} model. Our density functional theory calculations reveal that both the symmetry-allowed 120° antiferromagnetic orders support Weyl points in the intermediate temperature region, with distinct numbers and the locations of Weyl points. Our study highlights the important role Co_{3}Sn_{2}S_{2} can play in advancing our understanding of kagome physics and exploring the interplay between magnetism and band topology.

4.
Phys Rev Lett ; 127(1): 017201, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270292

RESUMO

Sr_{2}CuTe_{0.5}W_{0.5}O_{6} is a square-lattice magnet with superexchange between S=1/2Cu^{2+} spins mediated by randomly distributed Te and W ions. Here, using sub-K temperature and 20 µeV energy resolution neutron scattering experiments we show that this system transits from a gapless disorder-induced spin liquid to a new quantum state below T_{f}=1.7(1) K, exhibiting a weak frozen moment of ⟨S⟩/S∼0.1 and low energy dynamic susceptibility, χ^{''}(ℏω), linear in energy which is surprising for such a weak freezing in this highly fluctuating quantum regime.

5.
Chem Phys Lett ; 777: 138727, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-33994552

RESUMO

A recent screening study highlighted a molecular compound, apilimod, for its efficacy against the SARS-CoV-2 virus, while another compound, tetrandrine, demonstrated a remarkable synergy with the benchmark antiviral drug, remdesivir. Here, we find that because of significantly reduced potential energy barriers, which also give rise to pronounced quantum effects, the rotational dynamics of the most dynamically active methyl groups in apilimod and tetrandrine are much faster than those in remdesivir. Because dynamics of methyl groups are essential for biochemical activity, screening studies based on the computed potential energy profiles may help identify promising candidates within a given class of drugs.

6.
J Am Chem Soc ; 141(25): 9928-9936, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31136169

RESUMO

We present the synthesis and magnetic characterization of a polycrystalline sample of the 6H-perovskite Ba3CeRu2O9, which consists of Ru dimers based on face-sharing RuO6 octahedra. Our low-temperature magnetic susceptibility, magnetization, and neutron powder diffraction results reveal a nonmagnetic singlet ground state for the dimers. Inelastic neutron scattering, infrared spectroscopy, and the magnetic susceptibility over a wide temperature range are best explained by a molecular orbital model with a zero-field splitting parameter D = 85 meV for the Stot = 1 electronic ground-state multiplet. This large value is likely due to strong mixing between this ground-state multiplet and low-lying excited multiplets, arising from a sizable spin molecular orbital coupling combined with an axial distortion of the Ru2O9 units. Although the positive sign for the splitting ensures that Ba3CeRu2O9 is not a single molecule magnet, our work suggests that the search for these interesting materials should be extended beyond Ba3CeRu2O9 to other molecular magnets based on metal-metal bonding.

7.
J Am Chem Soc ; 140(32): 10305-10314, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30036053

RESUMO

MXenes are a new class of two-dimensional materials with properties that make them important for applications that include batteries, capacitive energy storage, and electrocatalysis. These materials can be exfoliated and delaminated to create high surface areas with interlayers accessibility. Intercalation is known to be possible, and it is critical for many applications including electrochemical energy storage, water purification, and sensing. However, little is known about the nature of the intercalant and bonding interactions between the intercalant within the MXene. We have investigated urea interaction within a titanium carbide based MXene using inelastic neutron scattering (INS) to probe the state of intercalated species. By comparison with reference materials, we find that under intercalation conditions urea decomposes readily, leading to intercalation of ammonium cations observable by INS and evolving carbon dioxide detected by infrared spectroscopy. Reactive molecular dynamics calculations were conducted to provide atomistic insights about reaction pathways and their energetics. These results have implications for understanding intercalation in active layered materials.

8.
Phys Rev Lett ; 121(5): 057201, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118279

RESUMO

The duality between the localized and itinerant nature of magnetism in 5f-electron systems has been a long-standing puzzle. Here, we report inelastic neutron scattering measurements, which reveal both local and itinerant aspects of magnetism in a single-crystalline system of UPt_{2}Si_{2}. In the antiferromagnetic state, we observe a broad continuum of diffuse magnetic scattering with a resonancelike gap of ≈7 meV and the surprising absence of coherent spin waves, suggestive of itinerant magnetism. While the gap closes above the Néel temperature, strong dynamic spin correlations persist to a high temperature. Nevertheless, the size and temperature dependence of the total magnetic spectral weight can be well described by a local moment with J=4. Furthermore, polarized neutron measurements reveal that the magnetic fluctuations are mostly transverse, with little or none of the longitudinal component expected for itinerant moments. These results suggest that a dual description of local and itinerant magnetism is required to understand UPt_{2}Si_{2} and, by extension, other 5f systems, in general.

9.
J Phys Chem A ; 122(33): 6736-6745, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30040898

RESUMO

Fluids confined in nanopores exhibit significant deviations in their structure and dynamics from the bulk behavior. Although phase, structural, and diffusive behaviors of confined fluids have been investigated and reported extensively, confinement effects on the vibrational properties are less understood. We study the vibrational behavior of propane confined in 1.5 nm nanopores of MCM-41-S using inelastic neutron scattering (INS) and molecular dynamics (MD) simulations. Vibrational spectra have been obtained from INS data as functions of temperature and pressure. At ambient pressure, a strong quasielastic signal observed in the INS spectrum at 80 K suggests that confined propane remains liquid below the bulk phase melting point of 85 K. The quasielastic signal is heavily suppressed when either the pressure is increased to 1 kbar or the temperature is lowered to 30 K, indicating solidification of pore-confined propane. Confinement in MCM-41-S pores results in a glass-like state of propane that exhibits a relatively featureless low-energy vibrational spectrum compared to that of the bulk crystalline propane. Increasing the pressure to 3 kbar results in hardening of the intermolecular and methyl torsional modes. The INS data are used for estimating the isochoric specific heat of confined propane, which is compared with the specific heat of bulk propane reported in literature. Data from MD simulations are used to calculate the vibrational power spectra that agree qualitatively with the experimental data. Simulation data also suggest a reduction of the structural ordering (positional, orientational, and intramolecular) of propane under confinement.

10.
Proc Natl Acad Sci U S A ; 111(49): 17402-7, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422420

RESUMO

We present the discovery of an unusually large isotope effect in the structural relaxation and the glass transition temperature Tg of water. Dielectric relaxation spectroscopy of low-density as well as of vapor-deposited amorphous water reveal Tg differences of 10 ± 2 K between H2O and D2O, sharply contrasting with other hydrogen-bonded liquids for which H/D exchange increases Tg by typically less than 1 K. We show that the large isotope effect and the unusual variation of relaxation times in water at low temperatures can be explained in terms of quantum effects. Thus, our findings shed new light on water's peculiar low-temperature dynamics and the possible role of quantum effects in its structural relaxation, and possibly in dynamics of other low-molecular-weight liquids.

11.
Phys Rev Lett ; 116(16): 167802, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152824

RESUMO

Using neutron scattering and ab initio simulations, we document the discovery of a new "quantum tunneling state" of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. In addition, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.

12.
Phys Rev Lett ; 115(23): 235701, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684125

RESUMO

The boson peak in deeply cooled water confined in nanopores is studied to examine the liquid-liquid transition (LLT). Below ∼180 K, the boson peaks at pressures P higher than ∼3.5 kbar are evidently distinct from those at low pressures by higher mean frequencies and lower heights. Moreover, the higher-P boson peaks can be rescaled to a master curve while the lower-P boson peaks can be rescaled to a different one. These phenomena agree with the existence of two liquid phases with different densities and local structures and the associated LLT in the measured (P, T) region. In addition, the P dependence of the librational band also agrees with the above conclusion.

13.
J Am Chem Soc ; 136(17): 6385-94, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24678996

RESUMO

A combination of density functional theory (DFT) calculations and experiments is used to shed light on the relation between surface structure and Li-ion storage capacities of the following functionalized two-dimensional (2D) transition-metal carbides or MXenes: Sc2C, Ti2C, Ti3C2, V2C, Cr2C, and Nb2C. The Li-ion storage capacities are found to strongly depend on the nature of the surface functional groups, with O groups exhibiting the highest theoretical Li-ion storage capacities. MXene surfaces can be initially covered with OH groups, removable by high-temperature treatment or by reactions in the first lithiation cycle. This was verified by annealing f-Nb2C and f-Ti3C2 at 673 and 773 K in vacuum for 40 h and in situ X-ray adsorption spectroscopy (XAS) and Li capacity measurements for the first lithiation/delithiation cycle of f-Ti3C2. The high-temperature removal of water and OH was confirmed using X-ray diffraction and inelastic neutron scattering. The voltage profile and X-ray adsorption near edge structure of f-Ti3C2 revealed surface reactions in the first lithiation cycle. Moreover, lithiated oxygen terminated MXenes surfaces are able to adsorb additional Li beyond a monolayer, providing a mechanism to substantially increase capacity, as observed mainly in delaminated MXenes and confirmed by DFT calculations and XAS. The calculated Li diffusion barriers are low, indicative of the measured high-rate performance. We predict the not yet synthesized Cr2C to possess high Li capacity due to the low activation energy of water formation at high temperature, while the not yet synthesized Sc2C is predicted to potentially display low Li capacity due to higher reaction barriers for OH removal.

14.
Phys Rev Lett ; 112(23): 237802, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24972226

RESUMO

The boson peak in deeply cooled water confined in nanopores is studied with inelastic neutron scattering. We show that in the (P, T) plane, the locus of the emergence of the boson peak is nearly parallel to the Widom line below ∼ 1600 bar. Above 1600 bar, the situation is different and from this difference the end pressure of the Widom line is estimated. The frequency and width of the boson peak correlate with the density of water, which suggests a method to distinguish the hypothetical "low-density liquid" and "high-density liquid" phases in deeply cooled water.


Assuntos
Modelos Químicos , Nanoporos , Difração de Nêutrons/métodos , Água/química , Temperatura Baixa , Transição de Fase
15.
J Am Chem Soc ; 135(13): 5111-7, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23480729

RESUMO

Atomistic molecular dynamics (MD) simulations were carried out to investigate the local dynamics of polyelectrolyte dendrimers dissolved in deuterium oxide (D2O) and its dependence on molecular charge. Enhanced segmental dynamics upon increase in molecular charge is observed, consistent with quasielastic neutron scattering (QENS) measurements. A strong coupling between the intradendrimer local hydration level and segmental dynamics is also revealed. Compelling evidence shows these findings originate from the electrostatic interaction between the hydrocarbon components of a dendrimer and the invasive water. This combined study provides fundamental insight into the dynamics of charged polyelectrolytes and the solvating water molecules.

16.
J Am Chem Soc ; 135(18): 6885-95, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23607732

RESUMO

The structure of SnO2 nanoparticles (avg. 5 nm) with a few layers of water on the surface has been elucidated by atomic pair distribution function (PDF) methods using in situ neutron total scattering data and molecular dynamics (MD) simulations. Analysis of PDF, neutron prompt gamma, and thermogravimetric data, coupled with MD-generated surface D2O/OD configurations demonstrates that the minimum concentration of OD groups required to prevent rapid growth of nanoparticles during thermal dehydration corresponds to ~0.7 monolayer coverage. Surface hydration layers not only stabilize the SnO2 nanoparticles but also induce particle-size-dependent structural modifications and are likely to promote interfacial reactions through hydrogen bonds between adjacent particles. Upon heating/dehydration under vacuum above 250 °C, nanoparticles start to grow with low activation energies, rapid increase of nanoparticle size, and a reduction in the a lattice dimension. This study underscores the value of neutron diffraction and prompt-gamma analysis, coupled with molecular modeling, in elucidating the influence of surface hydration on the structure and metastable persistence of oxide nanomaterials.

17.
J Chem Phys ; 139(7): 074504, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23968099

RESUMO

The OH stretching vibrational spectrum of water was measured in a wide range of temperatures across the triple point, 269 K OH, were determined for the first time within the framework of a harmonic description of the proton dynamics. We found that in the liquid the value of OH is nearly constant as a function of T, indicating that quantum effects on the OH stretching frequency are weakly dependent on temperature. In the case of ice, ab initio electronic structure calculations, using non-local van der Waals functionals, provided OH values in agreement with INS experiments. We also found that the ratio of the stretching (OH) to the total (exp) kinetic energy, obtained from the present measurements, increases in going from ice, where hydrogen bonding is the strongest, to the liquid at ambient conditions and then to the vapour phase, where hydrogen bonding is the weakest. The same ratio was also derived from the combination of previous deep inelastic neutron scattering data, which does not rely upon the harmonic approximation, and the present measurements. We found that the ratio of stretching to the total kinetic energy shows a minimum in the metastable liquid phase. This finding suggests that the strength of intermolecular interactions increases in the supercooled phase, with respect to that in ice, contrary to the accepted view that supercooled water exhibits weaker hydrogen bonding than ice.

18.
J Chem Phys ; 139(24): 244705, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24387386

RESUMO

In this paper we report a combined calorimetric and inelastic neutron scattering (INS) study of hydrated γ-Al2O3 (γ-alumina) nanoparticles. These complementary techniques have enabled a comprehensive evaluation of the thermodynamic properties of this technological and industrially important metal oxide to be achieved. The isobaric heat capacity (C(p)) data presented herein provide further critical insights into the much-debated chemical composition of γ-alumina nanoparticles. Furthermore, the isochoric heat capacity (C(v)) of the surface water, which is so essential to the stability of all metal-oxides at the nanoscale, has been extracted from the high-resolution INS data and differs significantly from that of ice-Ih due to the dominating influence of strong surface-water interactions. This study also encompassed the analysis of four γ-alumina samples with differing pore diameters [4.5 (1), 13.8 (2), 17.9 (3), and 27.2 nm (4)], and the results obtained allow us to unambiguously conclude that the water content and pore size have no influence on the thermodynamic behaviour of hydrated γ-alumina nanoparticles.

19.
Nat Commun ; 14(1): 3134, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253731

RESUMO

Lanthanides in the trivalent oxidation state are typically described using an ionic picture that leads to localized magnetic moments. The hierarchical energy scales associated with trivalent lanthanides produce desirable properties for e.g., molecular magnetism, quantum materials, and quantum transduction. Here, we show that this traditional ionic paradigm breaks down for praseodymium in the tetravalent oxidation state. Synthetic, spectroscopic, and theoretical tools deployed on several solid-state Pr4+-oxides uncover the unusual participation of 4f orbitals in bonding and the anomalous hybridization of the 4f1 configuration with ligand valence electrons, analogous to transition metals. The competition between crystal-field and spin-orbit-coupling interactions fundamentally transforms the spin-orbital magnetism of Pr4+, which departs from the Jeff = 1/2 limit and resembles that of high-valent actinides. Our results show that Pr4+ ions are in a class on their own, where the hierarchy of single-ion energy scales can be tailored to explore new correlated phenomena in quantum materials.

20.
J Phys Chem Lett ; 14(44): 10080-10087, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37917420

RESUMO

Iodine oxides I2Oy (y = 4, 5, 6) crystallize into atypical structures that fall between molecular- and framework-base types and exhibit high reactivity in an ambient environment, a property highly desired in the so-called "agent defeat materials". Inelastic neutron scattering experiments were performed to determine the phonon density of states of the newly synthesized I2O5 and I2O6 samples. First-principles calculations were carried out for I2O4, I2O5, and I2O6 to predict their thermodynamic properties and phonon density of states. Comparison of the INS data with the Raman and infrared measurements as well as the first-principles calculations sheds light on their distinctive, anisotropic thermomechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA