Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biomater ; 33: 78-87, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826528

RESUMO

Biologic scaffolds composed of extracellular matrix are commonly used in a variety of surgical procedures. The Food and Drug Administration typically regulates biologic scaffolds as medical devices, thus requiring terminal sterilization prior to clinical use. However, to date, no consensus exists for the most effective yet minimally destructive sterilization protocol for biologic scaffold materials. The objective of the present study was to characterize the effect of ethylene oxide, gamma irradiation and electron beam (e-beam) irradiation on the material properties and the elicited in vivo remodeling response of a porcine dermal biologic scaffold. Outcome measures included biochemical, structural, and mechanical properties as well as cytocompatibility in vitro. In vivo evaluation utilized a rodent model to examine the host response to the materials following 7, 14, and 35 days. The host response to each experimental group was determined by quantitative histologic methods and by immunolabeling for macrophage polarization (M1/M2). In vitro results show that increasing irradiation dosage resulted in a dose dependent decrease in mechanical properties compared to untreated controls. Ethylene oxide-treated porcine dermal ECM resulted in decreased DNA content, extractable total protein, and bFGF content compared to untreated controls. All ETO treated, gamma irradiated, and e-beam irradiated samples had similar cytocompatibility scores in vitro. However, in vivo results showed that increasing dosages of e-beam and gamma irradiation elicited an increased rate of degradation of the biologic scaffold material following 35 days. STATEMENT OF SIGNIFICANCE: The FDA typically regulates biologic scaffolds derived from mammalian tissues as medical devices, thus requiring terminal sterilization prior to clinical use. However, there is little data and no consensus for the most effective yet minimally destructive sterilization protocol for such materials. The present study characterized the effect of common sterilization methods: ethylene oxide, gamma irradiation and electron beam irradiation on the material properties and the elicited in vivo remodeling response of a porcine dermal biologic scaffold. The results of the study will aid in the meaningful selection of sterilization methods for biologic scaffold materials.


Assuntos
Derme/fisiologia , Teste de Materiais/métodos , Esterilização , Alicerces Teciduais/química , Animais , Linhagem Celular , Polaridade Celular , Derme/ultraestrutura , Células Endoteliais/citologia , Feminino , Humanos , Macrófagos/citologia , Microvasos/citologia , Fenótipo , Porosidade , Ratos Sprague-Dawley , Sus scrofa
2.
Biomaterials ; 34(28): 6760-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23787110

RESUMO

Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development. Perfusion-decellularized organs are a likely candidate for use in such scaffolds since they mimic compositional, architectural and biomechanical nature of a native organ. In this study, we investigate perfusion-decellularization of whole pancreas and the feasibility to recellularize the whole pancreas scaffold with pancreatic cell types. Our result demonstrates that perfusion-decellularization of whole pancreas effectively removes cellular and nuclear material while retaining intricate three-dimensional microarchitecture with perfusable vasculature and ductal network and crucial extracellular matrix (ECM) components. To mimic pancreatic cell composition, we recellularized the whole pancreas scaffold with acinar and beta cell lines and cultured up to 5 days. Our result shows successful cellular engraftment within the decellularized pancreas, and the resulting graft gave rise to strong up-regulation of insulin gene expression. These findings support biological utility of whole pancreas ECM as a biomaterials scaffold for supporting and enhancing pancreatic cell functionality and represent a step toward bioengineered pancreas using regenerative medicine approaches.


Assuntos
Matriz Extracelular/química , Pâncreas/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos ICR , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA