Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 542(7639): 66-70, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28002409

RESUMO

Engineered spin-orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin-orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin-orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin-orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin-momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.

2.
Phys Rev Lett ; 112(12): 123001, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24724647

RESUMO

Ramsey spectroscopy has become a powerful technique for probing nonequilibrium dynamics of internal (pseudospin) degrees of freedom of interacting systems. In many theoretical treatments, the key to understanding the dynamics has been to assume the external (motional) degrees of freedom are decoupled from the pseudospin degrees of freedom. Determining the validity of this approximation-known as the spin model approximation-has not been addressed in detail. Here we shed light in this direction by calculating Ramsey dynamics exactly for two interacting spin-1/2 particles in a harmonic trap. We focus on s-wave-interacting fermions in quasi one- and two-dimensional geometries. We find that in one dimension the spin model assumption works well over a wide range of experimentally relevant conditions, but can fail at time scales longer than those set by the mean interaction energy. Surprisingly, in two dimensions a modified version of the spin model is exact to first order in the interaction strength. This analysis is important for a correct interpretation of Ramsey spectroscopy and has broad applications ranging from precision measurements to quantum information and to fundamental probes of many-body systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA