Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121609, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943744

RESUMO

Sustainable management of critical raw materials is of paramount importance to ensure a steady supply and reduce environmental impact. The application of newly synthesized and environmentally friendly ALG@CS material as a bio-adsorbent for the effective rare earth elements removal from aqueous solution has been presented. The synthesized material underwent FTIR, XPS, EDX, and SEM analysis to determine its suitability for metal uptake. To evaluate the adsorption capacity of ALG@CS for rare earth elements several factors were taken into consideration. These factors included alginate:chitosan ratios, bead size, pH level, composite mass, interaction time, metal ion concentration, and temperature, being all varied during the batch mode evaluation process. Under the optimal conditions, the maximum adsorption capacities were found to be 145.90 mg La(III)/g, 168.44 mg Ce(III)/g, 132.51 mg Pr(III)/g, 128.40 mg Nd(III)/g, 154.36 mg Sm(III)/g, and 165.10 mg Ho(III)/g. The equilibrium data fits well with non-linear three-parameter Sips and Redlich-Peterson isotherm models. The PSO model finds the highest process suitability. The synthesized ALG@CS bio-adsorbent showed excellent regenerative capacity in ten cycles, making it a suitable adsorbent for rare earth elements uptake. The unique bio-adsorbents combination allows for efficient critical raw materials adsorption providing a promising solution for their recovery and recycling.


Assuntos
Alginatos , Quitosana , Metais Terras Raras , Quitosana/química , Adsorção , Alginatos/química , Metais Terras Raras/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/métodos
2.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770630

RESUMO

The recycling of REEs from the end of life (EoL) products, such as nickel metal hydride batteries (NiMH), offers great opportunities for their supply in Europe. In the presented paper, the application of 'green' extractants such as citric (CA), metatartaric (TA), and ethylenediaminedisuccinic acid (EDDS) (also with H2O2 addition) for the recovery of REEs was studied. The studies were conducted considering the effects of the phase contact time, the initial concentration of CA, TA, and EDDS, as well as H2O2, pH, and temperature. It was found that the addition of TA to the CA solution meant that higher rates of metal ion binding and, thus, leaching was observed. The optimal conditions were obtained in the system: CA-TA and H2O2 for the concentration 0.6M-0.3 M-2%.

3.
J Environ Manage ; 307: 114551, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066202

RESUMO

In this study the iron oxide ion exchanger with the quaternary ammonium groups, Ferrix A33E was modified with neodymium (III) ions in order to obtain the new material Ferrix A33E-Nd(III) characterized by greater sorption efficiency of arsenate(V) ions. A33E-Nd(III) was described by various techniques including scanning electron microscopy SEM, nitrogen adsorption/desorption isotherms, Fourier transform infrared spectroscopy FTIR and X-ray photoelectron spectroscopy XPS. The point of zero charge, pHPZC was also determined. The kinetic and thermodynamic parameters of the arsenate(V) sorption were calculated. The experimental data was fitted to the four isotherm models - Langmuir, Freundlich, Dubinin-Radushkevich and Halsey. Kinetic and equilibrium studies allowed to get to know the behaviour of arsenate(V) ions during the sorption on A33E-Nd(III). The obtained material A33E-Nd(III)- was found to possess a larger maximum sorption capacity than A33E, great stability and the possibility of regeneration at least 3 times without a significant decrease in efficiency. This allows for the complete removal of As(V) ions from a solution with a concentration of 50 mg/dm3 in just 30 min. The Nd(III)-modification improved the sorption properties of the tested ion exchanger.


Assuntos
Arseniatos , Poluentes Químicos da Água , Adsorção , Compostos Férricos , Concentração de Íons de Hidrogênio , Íons , Cinética , Neodímio , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Poluentes Químicos da Água/análise
4.
J Environ Manage ; 313: 114958, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390654

RESUMO

The paper presents the results of the studies on the vanadium (V) ions removal from the aqueous solutions in the adsorption process on biochars from different biomass types (cow manure BC1, wet distiller grains BC2, spent mushroom substrates BC3). The adsorbents were characterized by means of the SEM-EDS, FTIR, XRD and XPS techniques. The influence of adsorbent type and basic process parameters, such as pH and metal ion concentration in aqueous phase, adsorbent dose and time of contact of phases on the efficiency of V(V) was determined. Based on the obtained results, the mechanism and kinetics of the adsorption processes occurring on the biochar originating from the wet distiller grains as adsorbents with the greatest affinity for the V(V) ions were characterized, using isotherm models of Langmuir, Freundlich, Temkin and Dubinin-Radushkevich and pseudo-first-order, pseudo-second-order as well as intraparticle diffusion kinetic models. Under the constant process conditions (pH = 3.0; m = 0.5 g; c0 = 50 mg/L) the order of V(V) ions removal from aqueous solutions was as follows: BC2 > BC1 = BC3. The biochar BC2 exhibited the maximum sorption capacity of 1.61 mg V(V)/g. The experimental kinetic data show the adsorption course according to the pseudo-second order model.


Assuntos
Vanádio , Poluentes Químicos da Água , Adsorção , Biomassa , Carvão Vegetal , Concentração de Íons de Hidrogênio , Íons , Cinética , Soluções , Termodinâmica , Água , Poluentes Químicos da Água/química
5.
J Environ Manage ; 324: 116306, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36166864

RESUMO

This study concerns the fabrication of CTAB- and N,N-dimethyltetradecylamine-grafted zirconia and evaluation of their ability to adsorb vanadium ions. The effectiveness of ZrO2 functionalization and the different nature of the modifiers used were confirmed by differences in the porosity (ZrO2: SBET = 347 m2/g; ZrO2-CTAB: SBET = 375 m2/g, ZrO2-NH+: SBET = 155 m2/g), types of functional groups, and isoelectric points (the ZrO2 and CTAB-modified samples have IEPs = 3.8 and 3.9, ZrO2-NH+ has IEP = 7.1) of the prepared adsorbents. The designed materials were tested in batch adsorption experiments involving the removal of vanadium ions from model wastewaters at various process parameters, among which pH proved to be the most important. Based on equilibrium and kinetic evaluations, it was proved that the sorption of V(V) ions followed pseudo-second-order and intraparticle diffusion models, and the data were better fitted to the Langmuir model, suggesting the following order of the sorbents in terms of favorability for V(V) ion adsorption: ZrO2-NH+ > ZrO2 > ZrO2-CTAB. The estimated maximum monolayer capacity of ZrO2-NH+ for V(V) (87.72 mg/g) was the highest among the tested materials. Additionally, it was confirmed that adsorption of V(V) ions onto synthesized materials is a heterogeneous, exothermic, and spontaneous reaction, as evidenced by the calculated values of thermodynamic parameters. The key goals included the transfer of experimental findings obtained using model solutions to the adsorption of V(V) ions from solutions arising from the leaching process of spent catalysts. The highest adsorption efficiencies of 70.8% and 47.5% were recorded for the ZrO2-NH+ material in acidic solution; this may be related to the protonization of -NH+ groups, which favors the sorption of V(V) ions. Based on desorption tests as well as the results of infrared and X-ray photoelectron spectroscopy, irrespective of the process conditions, the physical nature of the adsorbent/adsorbate interaction was confirmed.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Vanádio , Poluentes Químicos da Água/química , Cetrimônio , Concentração de Íons de Hidrogênio , Adsorção , Íons , Cinética , Termodinâmica
6.
Ecotoxicol Environ Saf ; 219: 112336, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34044310

RESUMO

Heavy metals are widely distributed in the environment due to the natural processes and anthropogenic human activities. Their migration into no contaminated areas contributing towards pollution of the ecosystems e.g. soils, plants, water and air. It is recognized that heavy metals due to their toxicity, long persistence in nature can accumulate in the trophic chain and cause organism dysfunction. Although the popularity of herbal medicine is rapidly increasing all over the world heavy metal toxicity has a great impact and importance on herbal plants and consequently affects the quality of herbal raw materials, herbal extracts, the safety and marketability of drugs. Effective control of heavy metal content in herbal plants using in pharmaceutical and food industries has become indispensable. Therefore, this review describes various important factors such as ecological and environmental pollution, cultivation and harvest of herbal plants and manufacturing processes which effects on the quality of herbal plants and then on Chinese herbal medicines which influence human health. This review also proposes possible management strategies to recover environmental sustainability and medication safety. About 276 published studies (1988-2021) are reviewed in this paper.


Assuntos
Produtos Agrícolas/química , Metais Pesados/análise , Plantas Medicinais/química , Poluentes do Solo/análise , China , Medicamentos de Ervas Chinesas , Ecossistema , Monitoramento Ambiental , Poluição Ambiental , Humanos , Solo
7.
Environ Res ; 191: 110171, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919960

RESUMO

Increasing the number of applications of rare earth elements (REEs) has led to increased release of these metals into the environment. Removal of REEs from e-wastes is very important considering the increasing demand for these elements, the limited resource availability of them as well as the significant environmental issues. In this present study, optimization of the La(III) ions sorption from acidic solutions on chelating ion exchangers containing different functional groups, i.e. Amberlite IRC748, Purolite S930, Lewatit® Monoplus TP208, Amberlite IRC747, Purolite S940, and Purolite S950, was carried out. The sorption data was analyzed using the Lagergren pseudo-first order, Ho and McKay pseudo-second order, Weber-Morris intraparticle diffusion, Boyd kinetic models, pore and film diffusion coefficients as well as the Langmuir, Freundlich, and Temkin isotherm models. Additionally, thermodynamic parameters and regeneration abilities of chelating ion exchangers were evaluated. The maximum recovery of La(III) ions was found for HNO3 concentration equal to 0.2 mol/dm3. The La(III) ions sorption was fast and sorption equilibrium was achieved after about 60 min. The best fitting for the lanthanum(III) ions sorption was obtained using the pseudo-second order kinetic and Langmuir isotherm models. Moreover, breakthrough curves were obtained from dynamic studies. The physicochemical characterization places special emphasis on determination of chemical composition of ion exchangers using ATR/FT-IR and XPS spectroscopy. Furthermore, characterization parameters of ion exchangers such as surface area and porosity (pore size), point of zero charge, and thermal stability were estimated. Chelating ion exchangers with aminophosphonic functional groups are characterized by the best adsorption properties towards La(III) ions so they could be used for the recovery of rare earth elements from spent battery solutions.


Assuntos
Lantânio , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
8.
Molecules ; 25(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824060

RESUMO

The recovery of La(III) and Ni(II) ions by a macroporous cation exchanger in sodium form (Lewatit Monoplus SP112) has been studied in batch experiments under varying HNO3 concentrations (0.2-2.0 mol/dm3), La(III) and Ni(II) concentrations (25-200 mg/dm3), phase contact time (1-360 min), temperature (293-333 K), and resin mass (0.1-0.5 g). The experimental data revealed that the sorption process was dependent on all parameters used. The maximum sorption capacities were found at CHNO3 = 0.2 mol/dm3, m = 0.1 g, and T = 333 K. The kinetic data indicate that the sorption followed the pseudo-second order and film diffusion models. The sorption equilibrium time was reached at approximately 30 and 60 min for La(III) and Ni(II) ions, respectively. The equilibrium isotherm data were best fitted with the Langmuir model. The maximum monolayer capacities of Lewatit Monoplus SP112 were equal to 95.34 and 60.81 mg/g for La(III) and Ni(II) ions, respectively. The thermodynamic parameters showed that the sorption process was endothermic and spontaneous. Moreover, dynamic experiments were performed using the columns set. The resin regeneration was made using HCl and HNO3 solutions, and the desorption results exhibited effective regeneration. The ATR/FT-IR and XPS spectroscopy results indicated that the La(III) and Ni(II) ions were coordinated with the sulfonate groups.


Assuntos
Lantânio/isolamento & purificação , Níquel/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Concentração de Íons de Hidrogênio , Troca Iônica , Lantânio/análise , Níquel/análise , Temperatura , Termodinâmica , Poluentes Químicos da Água/análise
9.
ChemSusChem ; 17(10): e202301817, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38506188

RESUMO

Nowadays, there is a great interest in efficient adsorbent development due to the recent demand for lanthanides, which are widely used in high-tech technology. Alginates, owing to their natural occurrence, gel formation capability, and safety, could be promising feasible adsorbents for lanthanide removal. This study proposes the alginate-cellulose composite as an ecological, sustainable adsorbent for light lanthanide sorption. The structure, morphology, qualitative and quantitative compositions, average diameter, and pHpzc of the composite were discussed in great detail. Using the batch approach, sorption trials were performed to evaluate the metal sorption performance. The maximum lanthanide accumulation was attained at pH 5.0 and a dosage of 0.05 g. The uptake kinetics are successfully explained by the Ho and McKay model, whereas the equilibrium data is best represented by the Langmuir equation. The presence of Cl-, NO3 -, SO4 2-, Ni(II), and Co(II) did not have any impact on the adsorption capacity. In turn, the presence of Fe(III) ions led to a 15 % reduction in the adsorption. The lanthanide ions were eluted from the adsorbent following the treatment with 0.1 M HNO3. The adsorbent retained over 95 % of its initial adsorption capacity after 6 series of sorption/desorption studies.

10.
Materials (Basel) ; 16(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770065

RESUMO

The paper investigated the adsorption of the packed-bed column with the alginate-based adsorbents (ALG-based adsorbents) such as alginate-biochar, alginate-clinoptilolite, alginate-lignin, and alginate-cellulose for La(III) ions' removal. Fixed-bed adsorption studies with various alginate-based adsorbents were carried out and compared to the La(III) ions adsorption. The columns were filled with ALG-based adsorbent beads of approximately 1.1 ± 0.005 mm spherical shapes. The effects of the inlet concentrations on the breakthrough curves were studied in terms of the adsorption performance of the ALG-based adsorbents. The experimental data were correlated with the Adams-Bohart, Yoon-Nelson, Thomas, and Wolborska models to determine the best operational parameters. Based on the comparison of R2 values, the Thomas and Yoon-Nelson models were found to be more suitable than the Adams-Bohart and Wolborska models. In the desorption study, the ALG-based adsorbents packed columns showed the maximum desorption of La(III) just after passing 100 cm3 of 1 mol/dm3 HCl. Overall, the results show that ALG-based adsorbents could be used for continuous recovery of La(III) ions from aqueous solutions and were not only cost-effective but also environmentally friendly.

11.
Materials (Basel) ; 16(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36676530

RESUMO

Phosphate rocks (PRs) play a crucial role in ensuring the availability of phosphorous for the world's food needs. PRs are used to manufacture phosphoric acid in the wet process as well as P-fertilizers. The chemical and mineralogical compositions of PRs from Djebel Onk (Algeria), Khneifiss (Syria), Negev (Israel), Bou Craa (Morocco), and Khouribga (Morocco) are discussed in this study. PRs were characterized by inductively coupled plasma optical emission spectrometry (ICP-OES), cold vapor atomic absorption spectrometry (CVAAS), ion chromatography (IC), and X-ray diffraction (XRD), as well as gravimetric and potentiometric methods. All PRs were mainly composed of CaO, P2O5, SiO2, F, SO3, Na2O, MgO, Al2O3, Fe2O3, SrO, and K2O at the level of wt.%. The P2O5 content accounted for 28.7-31.2%, which indicates that these are beneficial rocks to a marketable product. The degree of PR purity expressed by the minor elements ratio index (MER index) varied from 2.46% to 10.4%, and the CaO/P2O5 weight ratio from 1.6 to 1.9. In addition, the occurrence of trace elements such as As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Ti, V, U, and Zn, as well as Cr(VI) and Cl ions at the level of mg∙kg-1 was found. Since PRs will be used to produce P-fertilizers, their composition was compared with the regulatory parameters set up by EU Regulation 2019/1009 related to the heavy metals (As, Cd, Pb, Ni, Hg, Cu, Zn) and Cr(VI) contents in inorganic fertilizers. The heavy metals and Cr(VI) content in all PRs did not exceed the limit values. XRD analysis revealed that fluorapatite, hydroxyapatite, carbonate fluorapatite, and carbonate hydroxyapatite were the dominant minerals. The accuracy and precision of the used methods were evaluated by analysis of standard reference materials (SRM) for Western Phosphate Rock (NIST 694). The recovery was 85.3% for U and 109% for K2O, and the RSD ranged from 0.67% to 12.8%.

12.
Materials (Basel) ; 17(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203996

RESUMO

The superabsorbents' application as materials for the preparation of modern mineral fertilizers of controlled activity is presented. Under the static conditions, the commercial acrylic-based Agro® Hydrogel was used as a sorbent for Cu(II), Fe(III), Mn(II), and Zn(II) ions in the presence of three biodegradable complexing agents of the new generation: (N-1,2-dicarboxyethyl)-D,L-aspartate acid (IDHA), N,N-ethylenediaminedisuccinic acid (EDDS) and N,N-bis(carboxymethyl) glutamic acid (GLDA). The ions and complexes concentrations were determined by the inductively coupled plasma optical emission spectrometer (ICP-OES). The characterization of hydrogel before and after the adsorption process was made using the Fourier transform infrared spectroscopy (FT-IR), surface area determination (ASAP), scanning electron microscopy (SEM-EDS) as well as the thermogravimetric (TGA) methods. The influence of the phase contact time, initial concentration, and pH on the adsorption capacities was investigated. The kinetic and adsorption parameters were determined. The Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin adsorption models were applied to describe the experimental data. The Langmuir isotherm model accurately characterized the equilibrium process. The adsorption process was fast, and it reached equilibrium after 60 min of the phase contact time. The research on the adsorption of Cu(II), Fe(III), Mn(II), and Zn(II) onto Agro® Hydrogel with IDHA, EDDS, and GLDA indicates that these complexing agents improve process efficiency.

13.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676380

RESUMO

This paper estimates the suitability of the strongly basic anion exchangers, Dowex PSR2 and Dowex PSR3, as sorbents of nickel ions in aqueous solutions. These actions are aimed at searching for new solutions due to the growing discharge of nickel into wastewaters, primarily due to its addition to steel. The nickel sorption experiments were conducted under static conditions and resulted in the optimization of pH, phase contact time, initial solution concentration, and temperature. The next step was to calculate the kinetic, isothermal, and thermodynamic parameters. Moreover, the ion exchangers were characterized by means of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and CHN elemental analysis. It was found that the sorption process was most effective at pH 6 after 240 min and at the temperature of 293 K. The values of the thermodynamic parameters revealed that the adsorption was exothermic and spontaneous. The physicochemical analyses combined with the experimental research enabled determination of the sorption mechanism of Ni(II) ions.

14.
Biomolecules ; 13(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37892148

RESUMO

Deadwood plays an important role in forest ecology; its degradation and, therefore, carbon assimilation is carried out by fungi and bacteria. To quantify the abundance and distribution of microbial taxa inhabiting dead spruce logs fallen over a span of 50 years and the soil beneath, we used taxonomic profiling with NGS sequencing of hypervariable DNA fragments of ITS1 and 16S V3-V4, respectively. The analysis of sequencing data revealed a high level of diversity in microbial communities participating in the degradation of spruce logs. Differences in the relative abundance of microbial taxa between the samples of the wood that died in 1974 and 2014, and of the soil in its immediate vicinity, were visible, especially at the genus level. Based on the Lefse analysis significantly higher numbers of classified bacterial taxa were observed in the wood and soil samples from 2014 (wood: 1974-18 and 2014-28 taxa; soil: 1974-8 and 2014-41 taxa) while the number of classified fungal taxa was significantly higher in the wood and soil samples from 1974 (wood: 1974-17 and 2014-9 taxa; soil: 1974-57 and 2014-28 taxa). Most of the bacterial and fungal amplicon sequence variants (ASVs) unique to wood were found in the samples from 1974, while those unique to soil were detected in the samples from 2014. The ATR-FTIR method supported by CHN analysis revealed physicochemical changes in deadwood induced by the activity of fungal and bacterial organisms.


Assuntos
Consórcios Microbianos , Microbiota , Consórcios Microbianos/genética , Florestas , Madeira/microbiologia , Microbiota/genética , Solo , Fungos/genética
15.
Materials (Basel) ; 15(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160907

RESUMO

The recent increase in interest in rare earth elements is due to their increasing use in many areas of life. However, along with their increasing popularity, the problem of their natural resources availability arises. In this study, an alginate-lignin composite (ALG-L) was fabricated and tested for adsorptive abilities of the rare earth elements (La(III), Ce(III), Pr(III), and Nd(III)) from aqueous solutions. The characterization of the newly synthetized calcium alginate-lignin composite was performed using ATR/FT-IR, SEM, EDX, OM, AFM, XRD, BET, sieve analysis and pHpzc measurements. The adsorption mechanism of the ALG5L1 composite for REEs was analyzed through a series of kinetic, equilibrium and thermodynamic adsorption experiments. Under the optimum sorption conditions, i.e., sorbent mass 0.1 g, pH 5.0, temperature 333 K, the maximum adsorption capacities of the ALG5L1 composite for La(III), Ce(III), Pr(III), and Nd(III) reached 109.56, 97.97, 97.98, and 98.68 mg/g, respectively. The desorption studies indicate that the new calcium alginate-lignin composite is characterized by good recycling properties and can be also reused. To sum up the advantages of low cost, easy synthesis, high adsorption efficiencies and reusability indicate that the ALG5L1 composite has great application perspectives for REEs recovery.

16.
Materials (Basel) ; 15(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079488

RESUMO

The chitosan-modified biochars BC-CS 1-1, BC-CS 2-1 and BC-CS 4-1 were subjected to the synthetic application of biochar from agriculture waste and chitosan for the adsorption of Cu(II), Cd(II), Zn(II), Co(II) and Pb(II) ions from aqueous media. The results displayed a heterogeneous, well-developed surface. Additionally, the surface functional groups carboxyl, hydroxyl and phenol, determining the sorption mechanism and confirming the thermal stability of the materials, were present. The sorption evaluation was carried out as a function of the sorbent dose, pH, phase contact time, initial concentration of the solution and temperature. The maximum value of qt for Pb(II)-BC-CS 4-1, 32.23 mg/g (C0 200 mg/L, mass 0.1 g, pH 5, 360 min), was identified. Nitric acid was applied for the sorbent regeneration with a yield of 99.13% for Pb(II)-BC-CS 2-1. The produced sorbents can be used for the decontamination of water by means of the cost-effective and high-performance method.

17.
Biomater Adv ; 139: 213011, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882155

RESUMO

Development of bone scaffolds that are nontoxic to eukaryotic cells, while revealing bactericidal activity still remains a huge challenge for the scientific community. It should be noted that only bacteriostatic (the ability of the biomaterial to inhibit the growth of bacteria) and bactericidal (the ability to kill >99.9 % bacteria) activities have clinical importance. Unfortunately, many material scientists are confused with the microbiological definition of antibacterial action and consider biomaterials causing reduction in colony-forming units (CFUs) by 50-80 % as promising antibacterial implants. The aim of this study was to synthesize three variants of Zn-doped hydroxyapatite (HA) nanopowder, which were characterized by different content of Zn2+ and served as a powder phase for the production of novel macroporous chitosan/agarose/nanoHA biomaterials with high antibacterial activity. Within this study, it was proven that the scaffold with a low zinc content (doping level 0.03 mol for 1 mol of HA; 0.2 wt%) revealed the gradual and slow release of the Zn2+ ions, preventing against accumulation of high and toxic concentration of therapeutic agents and providing prolonged antibacterial activity. Moreover, developed biomaterial was nontoxic to human osteoblasts and showed anti-biofilm properties, bactericidal activity (> 99.9 % of bacteria killed) against Staphylococcus epidermidis and Escherichia coli, significant antibacterial activity against Staphylococcus aureus (98.5 % of bacteria killed), and also bacteriostatic activity against Pseudomonas aeruginosa. Thus, the developed Zn-doped HA-based bone scaffold has excellent antibacterial properties without toxicity against eukaryotic cells, being a promising biomaterial for biomedical applications to repair bone defects and prevent post-surgery infections.


Assuntos
Antibacterianos , Zinco , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Biofilmes , Durapatita/farmacologia , Escherichia coli , Humanos , Staphylococcus epidermidis , Zinco/farmacologia
18.
Materials (Basel) ; 15(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35160975

RESUMO

The adsorption capacities of ion exchangers with N-methyl-D-glucamine (NMDG) groups (Amberlite IRA 743, Lewatit MK 51, Purolite S110 and Purolite S108) relative to V(V) ions were tested in a batch system, taking into account the influence of various parameters, such as the adsorbent mass (0.05-0.20 g), phase contact time (1-240 min), initial concentration (10-150 mg/L), and temperature (293-333 K), as well as in a column system where the variable operating parameters were initial concentration (50, 100 mg/L), bed volume (10, 100 mL) and flow rate (0.6, 6 mL/min). Pseudo-first order, pseudo-second order, intraparticle diffusion and Boyd models were used to describe the kinetic studies. The best fit was obtained for the pseudo-second order model. The Langmuir, Freundlich and Temkin adsorption models were used to describe the equilibrium data to acquire better knowledge about the adsorption mechanism. The thermodynamic parameters were also calculated, which showed that the studied processes are endothermic, spontaneous and thermodynamically favorable. The physicochemical properties of the ion exchangers were characterized by nitrogen adsorption/desorption analyses, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). The point of zero charge (pHPZC) was also determined.

19.
Environ Technol ; 32(7-8): 805-16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21879555

RESUMO

The paper presents experimental results and their evaluation for the sorption of copper(II), zinc(II), cobalt(II) and nickel(II) complexes with metatartaric acid on chelating ion exchangers with different functional groups. The literature lacks the data concerning sorption of heavy metal ions in the presence of metatartaric acid on ion exchangers. The effect of important parameters such as the value of pH, the metal(II) ion and ligand concentration as well as their molar ratio and the type of functional group of the ion exchanger used was studied. It was found that the time of 60 min was sufficient for sorption to attain equilibrium. The equilibrium sorption capacities for copper(II), zinc(II), cobalt(II) and nickel(II) complexes with metatartaric acid were 37.35 mg/g, 32.02 mg/g, 32.78 mg/g and 28.31 mg/g on Lewatit TP 207 and 42.15 mg/g, 34.32 mg/g, 27.76 mg/g and 21.70 mg/g on Lewatit TP 260, respectively. The sorption optimum pH was 7. Temperature does not affect the sorption process significantly. The sorption data were well fitted by the Langmuir adsorption model whereas kinetics of the sorption process was well described by the pseudo second order kinetics equation.


Assuntos
Quelantes/química , Metais Pesados/química , Metais Pesados/isolamento & purificação , Tartaratos/química , Simulação por Computador , Íons/química , Íons/isolamento & purificação , Cinética , Modelos Químicos
20.
Environ Technol ; 32(5-6): 569-82, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21877538

RESUMO

The performance of polystyrene anion exchangers in purifying wastewaters containing metatartaric acid and heavy metal ions (especially those from electroless plating processes) was investigated. The following anion exchangers were selected: Lewatit MonoPlus M 500, Lewatit MonoPlus MP 64, Lewatit MP 62 and Amberlite IRA 402. A batch method was used to study the influence of: phase contact time (1-120 min); solution pH (2-9); concentration of initial heavy metal Cu(II), Zn(II), Co(II) and Ni(II) complexes (1.25 x 10(-4) M to 8.0 x 10(-3) M); temperature (303-333K); and interfering ions (Cl-, NO3-, SO4(2-), Ca2+, Mg2+). The amounts of Cu(II), Zn(II), Co(II) and Ni(II) complexes with metatartaric acid sorbed at equilibrium using the strongly basic anion exchanger Lewatit MonoPlus M 500 were equal to 7.25 mg/g, 3.21 mg/g, 3.78 mg/g and 3.98 mg/g, respectively. The equilibrium sorption capacity increased slightly with increasing temperature. The optimal pH sorption was found to be 6.5. The experimental data were analysed using the Langmuir and Freundlich models. The maximum adsorption capacities q(0) determined from the Langmuir adsorption equation equal to 7.53 mg/g, 3.75 mg/g, 3.55 mg/g and 4.60 mg/g were in good agreement with the experimental values for Lewatit MonoPlus M 500. The kinetic data obtained at different concentrations were modelled using pseudo first order, pseudo second order and intraparticle diffusion equations. The experimental data were well described by the pseudo second order kinetic model.


Assuntos
Resinas de Troca Aniônica/química , Complexos de Coordenação/química , Metais Pesados/química , Poliestirenos/química , Tartaratos/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA