Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(2): 1381-1391, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33393569

RESUMO

Amphiphilic molecules (e.g. hydrotropes) that enhance the solubility of hydrophobic compounds in water are often charged. As a result, such compounds also show specific ion effects. These effects can either strengthen or weaken the solubilisation power of amphiphilic molecules, depending on their degree of ion hydration. They can even prevail and transform an apparent solubilizer into an "anti-hydrotrope", i.e. a salting-out agent. In the present paper, we discuss this subtle balance between specific (Hofmeister) effects exerted by ionic headgroups and the hydrophobicity of the residual compound structure, including the size of the molecule and the presence of electron-withdrawing groups.

2.
Chem Commun (Camb) ; 60(5): 610-613, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38099963

RESUMO

Calcium sulfate hemihydrate, also known as bassanite or Plaster of Paris, is one of the most extensively produced inorganic materials worldwide. Nowadays, bassanite is mainly obtained by thermal dehydration of calcium sulfate dihydrate (gypsum) - a process that consumes considerable amounts of energy and thus leaves a significant carbon footprint. Towards a more sustainable future, alternative technologies for bassanite production at low temperatures are therefore urgently required. While successful approaches involving organic solvents have been reported, we chose precipitation from aqueous solutions as a potentially even "greener" way of synthesis. In a previous work, we have shown that spontaneous formation of bassanite in water (in competition with thermodynamically favoured gypsum) can be achieved at 40 °C by the use of additives that maintain specific interactions with calcium sulfate precursors and modulate the local hydration household during crystallisation. The results of the present study demonstrate that bassanite can be obtained via simple precipitation from aqueous solutions at room temperature by the combination of additives acting through orthogonal mechanisms.

3.
Soft Matter ; 3(2): 238-243, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-32680271

RESUMO

An aqueous 40 wt% dispersion of polyurethane has been successfully printed at room temperature using a piezoelectric inkjet printer. Simple layered structures, as well as dots, were made and subsequently analyzed using white-light interferometry. A single layer was found to have a structure height of 10 µm; a value that suggests that this polyurethane dispersion may be suitable for use in rapid prototyping, since tall structures can be rapidly produced using only a few printing passes. Finally, by the simple addition of a water-soluble dye, colour gradients were produced using this printing technique.

5.
Langmuir ; 24(17): 9636-41, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18686983

RESUMO

Flow can change the rate at which solutes adsorb on surfaces by changing mass transfer to the surface, but moreover, flow can induce changes in the conformation of macromolecules in solution by providing sufficient stresses to perturb the segmental distribution function. However, there are few studies where the effect of flow on macromolecules has been shown to alter the structure of macromolecules adsorbed on surfaces. We have studied how the local energy dissipation alters the adsorption of gelatin onto polystyrene nanoparticles ( r = 85 nm). The change in the nature of the adsorbed layer is manifest in the change in the ability of the nanoparticles to resist aggregation. Circular dichroism spectroscopy was used to assess conformational changes in gelatin, and dynamic light scattering was used to assess the colloid stability. Experiments were conducted in a vortex jet mixer where energy density and mixing times have been quantified; mixing of the gelatin and unstable nanoparticles occurs on the order of milliseconds. The adsorption of the gelatin provides steric stabilization to the nanoparticles. We found that the stability of the gelatin-adsorbed nanoparticles increased with increasing mixing velocities: when the mixing velocities were changed from 0.9 to 550 m/s, the radius of the nanoclusters (aggregates) formed 12 h after the mixing decreased from 2620 to 600 nm. Increasing temperature also gave rise to similar trends in the stability behavior with increasing temperature, leading to increasing colloid stability. Linear flow birefringence studies also suggested that the velocity fields in the mixer are sufficiently strong to produce conformational changes in the gelatin. These results suggest that the energy dissipation produced by mixing can activate conformational changes in gelatin to alter its adsorption on the surfaces of nanoparticles. Understanding how such conformational changes in gelatin can be driven by local fluid mechanics and how these changes are related to the adsorption behavior of gelatin is very important both industrially and scientifically.


Assuntos
Coloides/química , Gelatina/química , Adsorção , Dicroísmo Circular , Luz , Modelos Estatísticos , Conformação Molecular , Nanopartículas/química , Nanotecnologia/métodos , Tamanho da Partícula , Polímeros/química , Poliestirenos/química , Espalhamento de Radiação , Eletricidade Estática , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA