Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Am J Physiol Cell Physiol ; 326(4): C1262-C1271, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497111

RESUMO

Defining the oxygen level that induces cell death within 3-D tissues is vital for understanding tissue hypoxia; however, obtaining accurate measurements has been technically challenging. In this study, we introduce a noninvasive, high-throughput methodology to quantify critical survival partial oxygen pressure (pO2) with high spatial resolution within spheroids by using a combination of controlled hypoxic conditions, semiautomated live/dead cell imaging, and computational oxygen modeling. The oxygen-permeable, micropyramid patterned culture plates created a precisely controlled oxygen condition around the individual spheroid. Live/dead cell imaging provided the geometric information of the live/dead boundary within spheroids. Finally, computational oxygen modeling calculated the pO2 at the live/dead boundary within spheroids. As proof of concept, we determined the critical survival pO2 in two types of spheroids: isolated primary pancreatic islets and tumor-derived pseudoislets (2.43 ± 0.08 vs. 0.84 ± 0.04 mmHg), indicating higher hypoxia tolerance in pseudoislets due to their tumorigenic origin. We also applied this method for evaluating graft survival in cell transplantations for diabetes therapy, where hypoxia is a critical barrier to successful transplantation outcomes; thus, designing oxygenation strategies is required. Based on the elucidated critical survival pO2, 100% viability could be maintained in a typically sized primary islet under the tissue pO2 above 14.5 mmHg. This work presents a valuable tool that is potentially instrumental for fundamental hypoxia research. It offers insights into physiological responses to hypoxia among different cell types and may refine translational research in cell therapies.NEW & NOTEWORTHY Our study introduces an innovative combinatory approach for noninvasively determining the critical survival oxygen level of cells within small cell spheroids, which replicates a 3-D tissue environment, by seamlessly integrating three pivotal techniques: cell death induction under controlled oxygen conditions, semiautomated imaging that precisely identifies live/dead cells, and computational modeling of oxygen distribution. Notably, our method ensures high-throughput analysis applicable to various cell types, offering a versatile solution for researchers in diverse fields.


Assuntos
Ilhotas Pancreáticas , Oxigênio , Humanos , Oxigênio/metabolismo , Hipóxia/metabolismo , Ilhotas Pancreáticas/metabolismo , Esferoides Celulares/metabolismo , Hipóxia Celular , Sobrevivência Celular
2.
Am J Transplant ; 24(2): 177-189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37813189

RESUMO

Present-day islet culture methods provide short-term maintenance of cell viability and function, limiting access to islet transplantation. Attempts to lengthen culture intervals remain unsuccessful. A new method was developed to permit the long-term culture of islets. Human islets were embedded in polysaccharide 3D-hydrogel in cell culture inserts or gas-permeable chambers with serum-free CMRL 1066 supplemented media for up to 8 weeks. The long-term cultured islets maintained better morphology, cell mass, and viability at 4 weeks than islets in conventional suspension culture. In fact, islets cultured in the 3D-hydrogel retained ß cell mass and function on par with freshly isolated islets in vitro and, when transplanted into diabetic mice, restored glucose balance similar to fresh islets. Using gas-permeable chambers, the 3D-hydrogel culture method was scaled up over 10-fold and maintained islet viability and function, although the cell mass recovery rate was 50%. Additional optimization of scale-up methods continues. If successful, this technology could afford flexibility and expand access to islet transplantation, especially single-donor islet-after-kidney transplantation.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Técnicas de Cultura de Células , Hidrogéis , Insulina , Sobrevivência Celular
3.
Microvasc Res ; 132: 104070, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890600

RESUMO

PURPOSE: Subcutaneous tissue is a promising site for cell transplantation; advantages include minimally invasive procedures and easy post-transplant monitoring. However, limited vascularity is the major known challenge. To address this challenge, a prevascularized graft bed is prepared in recipients. We aimed to establish an improved, clinically applicable approach to promote prevascularization of the subcutaneous graft bed prior to cell transplantation. METHODS: We applied a conventional prevascularization approach by subcutaneously implanting nylon discs into the backs of Lewis rats. After disc implantation, we treated rats with or without intermittent normobaric 100% oxygen inhalation (1 h, twice a day, for consecutive 7 days). We used histology to compare vascular density between the oxygen-treated or control groups. To assess the functional effects of prevascularization, we transplanted three hundred islets isolated from luciferase-transgenic Lewis rats into the oxygen-treated or control wild type Lewis recipients, then used bioluminescence imaging to track engraftment for 4 weeks. RESULTS: Oxygen treatment significantly augmented prevascularization in the subcutaneous site compared to controls. Islet transplantation into prevascularized graft beds demonstrated significant improvement in engraftment efficiency in oxygen-treated recipients compared to controls at 2-4 weeks post-transplantation. CONCLUSION: Combining intermittent normobaric 100% oxygen inhalation with a conventional vascularization approach promotes a functional vasculature within a week. A simple approach using normobaric oxygen has the potential for translation into clinical application in subcutaneous site cell transplantations.


Assuntos
Sobrevivência de Enxerto , Transplante das Ilhotas Pancreáticas , Neovascularização Fisiológica , Oxigênio/administração & dosagem , Tela Subcutânea/irrigação sanguínea , Condicionamento Pré-Transplante/métodos , Administração por Inalação , Animais , Esquema de Medicação , Ratos Endogâmicos Lew , Fatores de Tempo
4.
Transpl Int ; 33(7): 806-818, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198960

RESUMO

Pancreatic islet transplantation into the liver is an effective treatment for type 1 diabetes but has some critical limitations. The subcutaneous site is a potential alternative transplant site, requiring minimally invasive procedures and allowing frequent graft monitoring; however, hypoxia is a major drawback. Our previous study without scaffolding demonstrated post-transplant graft aggregation in the subcutaneous site, which theoretically exacerbates lethal intra-graft hypoxia. In this study, we introduce a clinically applicable subcutaneous islet transplantation platform using a biodegradable Vicryl mesh scaffold to prevent aggregation in a diabetic rat model. Islets were sandwiched between layers of clinically proven Vicryl mesh within thrombin-fibrin gel. In vitro, the mesh prevented islet aggregation and intra-islet hypoxia, which significantly improved islet viability. In vivo rat syngeneic islet transplantations into a prevascularized subcutaneous pocket demonstrated that the mesh significantly enhanced engraftment, as measured by assays for graft survival and function. Histological examination at 6 weeks showed well-vascularized grafts sandwiched in a flat shape between the mesh layers. The biodegradable mesh was fully absorbed by three months, which alleviated chronic foreign body reaction and fibrosis, and supported long-term graft maintenance. This simple graft shape modification approach is an effective and clinically applicable strategy for improved subcutaneous islet transplantation.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Glicemia , Diabetes Mellitus Experimental/cirurgia , Sobrevivência de Enxerto , Poliglactina 910 , Ratos , Telas Cirúrgicas
5.
Biochem Biophys Res Commun ; 486(3): 817-823, 2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28351620

RESUMO

BACKGROUND/AIMS: Pancreatic islet transplantation is an effective treatment for Type 1 diabetic patients to eliminate insulin injections; however, a shortage of donor organs hinders the widespread use. Although long-term islet storage, such as cryopreservation, is considered one of the key solutions, transplantation of cryopreserved islets is still not practical due to the extensive loss during the cryopreservation-rewarming process. We have previously reported that culturing islets in a hyperoxic environment is an effective treatment to prevent islet death from the hypoxic injury during culture. In this study, we explored the effectiveness of thawing and rewarming cryopreserved islets in a hyperoxic environment. METHODS: Following cryopreservation of isolated human islets, the thawing solution and culture media were prepared with or without pre-equilibration to 50% oxygen. Thawing/rewarming and the pursuant two-day culture were performed with or without oxygenation. Short-term recovery rate, defined as the volume change during cryopreservation and thawing/rewarming, was assessed. Ischemia-associated and inflammation-associated gene expressions were examined using qPCR after the initial rewarming period. Long-term recovery rate, defined as the volume change during the two-day culture after the thawing/rewarming, was also examined. Islet metabolism and function were assessed by basal oxygen consumption rate and glucose stimulated insulin secretion after long-term recovery. RESULTS: Oxygenated thawing/rewarming did not alter the short-term recovery rate. Inflammation-associated gene expressions were elevated by the conventional thawing/rewarming method and suppressed by the oxygenated thawing/rewarming, whereas ischemia-associated gene expressions did not change between the thawing/rewarming methods. Long-term recovery rate experiments revealed that only the combination therapy of oxygenated thawing/rewarming and oxygenated culture alleviated islet volume loss. These islets showed higher metabolism and better function among the conditions examined. CONCLUSION: Oxygenated thawing/rewarming alleviated islet volume loss, with the help of oxygenated culture.


Assuntos
Criopreservação/métodos , Ilhotas Pancreáticas/efeitos dos fármacos , Oxigênio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Crioprotetores/farmacologia , Glucose/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Cultura Primária de Células , Reaquecimento/métodos
6.
Am J Physiol Endocrinol Metab ; 310(11): E1016-26, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27117005

RESUMO

Long-term pancreatic cold ischemia contributes to decreased islet number and viability after isolation and culture, leading to poor islet transplantation outcome in patients with type 1 diabetes. In this study, we examined mechanisms of pancreatic cold preservation and rewarming-induced injury by interrogating the proapoptotic gene BBC3/Bbc3, also known as Puma (p53 upregulated modulator of apoptosis), using three experimental models: 1) bioluminescence imaging of isolated luciferase-transgenic ("Firefly") Lewis rat islets, 2) cold preservation of en bloc-harvested pancreata from Bbc3-knockout (KO) mice, and 3) cold preservation and rewarming of human pancreata and isolated islets. Cold preservation-mediated islet injury occurred during rewarming in "Firefly" islets. Silencing Bbc3 by transfecting Bbc3 siRNA into islets in vitro prior to cold preservation improved postpreservation mitochondrial viability. Cold preservation resulted in decreased postisolation islet yield in both wild-type and Bbc3 KO pancreata. However, after culture, the islet viability was significantly higher in Bbc3-KO islets, suggesting that different mechanisms are involved in islet damage/loss during isolation and culture. Furthermore, Bbc3-KO islets from cold-preserved pancreata showed reduced HMGB1 (high-mobility group box 1 protein) expression and decreased levels of 4-hydroxynonenal (4-HNE) protein adducts, which was indicative of reduced oxidative stress. During human islet isolation, BBC3 protein was upregulated in digested tissue from cold-preserved pancreata. Hypoxia in cold preservation increased BBC3 mRNA and protein in isolated human islets after rewarming in culture and reduced islet viability. These results demonstrated the involvement of BBC3/Bbc3 in cold preservation/rewarming-mediated islet injury, possibly through modulating HMGB1- and oxidative stress-mediated injury to islets.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Sobrevivência Celular/fisiologia , Criopreservação/métodos , Ilhotas Pancreáticas/lesões , Ilhotas Pancreáticas/fisiopatologia , Proteínas Proto-Oncogênicas/metabolismo , Reaquecimento/efeitos adversos , Animais , Células Cultivadas , Humanos , Estresse Oxidativo/fisiologia , Ratos , Ratos Endogâmicos Lew
7.
Biochem Biophys Res Commun ; 470(3): 534-538, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26801563

RESUMO

Pancreatic islet transplantation has been recognized as an effective treatment for Type 1 diabetes; however, there is still plenty of room to improve transplantation efficiency. Because islets are metabolically active they require high oxygen to survive; thus hypoxia after transplant is one of the major causes of graft failure. Knowing the optimal oxygen tension for isolated islets would allow a transplant team to provide the best oxygen environment during pre- and post-transplant periods. To address this issue and begin to establish empirically determined guidelines for islet maintenance, we exposed in vitro cultured islets to different partial oxygen pressures (pO2) and assessed changes in islet volume, viability, metabolism, and function. Human islets were cultured for 7 days in different pO2 media corresponding to hypoxia (90 mmHg), normoxia (160 mmHg), and hyerpoxia (270 or 350 mmHg). Compared to normoxia and hypoxia, hyperoxia alleviated the loss of islet volume, maintaining higher islet viability and metabolism as measured by oxygen consumption and glucose-stimulated insulin secretion responses. We predict that maintaining pre- and post-transplanted islets in a hyperoxic environment will alleviate islet volume loss and maintain islet quality thereby improving transplant outcomes.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/fisiologia , Técnicas de Cultura de Órgãos/métodos , Oxigênio/metabolismo , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Secreção de Insulina
8.
Surg Today ; 45(3): 297-304, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24973941

RESUMO

PURPOSE: Adenosquamous carcinoma of the pancreas is a rare subtype of pancreatic cancer. We herein describe the clinicopathological features of surgically resected cases of adenosquamous carcinoma of the pancreas. METHODS: From 2001 to 2011, 132 patients underwent R0 resection for Stage IIA or IIB pancreatic cancer. The survival rate, pathological features and recurrence status were reviewed. RESULTS: Out of 132 patients, 121 patients had tubular adenocarcinoma, and only seven had adenosquamous carcinoma (ASC). The incidence of ASC increased with the tumor size. The overall survival and disease-free survival periods of the patients with ASC were significantly shorter than those of patients with tubular adenocarcinoma (p = 0.0153 and p = 0.0045). The histological findings revealed more marked venous invasion in ASC compared to tubular adenocarcinoma (G1, G2 and G3). The proportion of v3 cases, which denotes the most severe venous invasion, was 31.3 % in G1, 47.3 % in G2, 60.0 % in G3 and 71.4 % in ASC cases, respectively. Other factors, including lymphatic and nerve invasion, were not correlated with the histological subtypes. The incidence of ASC was 11.1 % in the tumors more than 6 cm in diameter, and 0 % in those less than 2 cm in diameter. CONCLUSIONS: We revealed that adenosquamous carcinoma of the pancreas is associated with a poor outcome, and also clarified its clinicopathological features.


Assuntos
Carcinoma Adenoescamoso/patologia , Carcinoma Adenoescamoso/cirurgia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Adenoescamoso/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Pancreáticas/mortalidade , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento
9.
Cell Transplant ; 33: 9636897231224174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235662

RESUMO

Fireflies produce light through luciferase-catalyzed reactions involving luciferin, oxygen, and adenosine triphosphate, distinct from other luminescent organisms. This unique feature has revolutionized molecular biology and physiology, serving as a valuable tool for cellular research. Luciferase-based bioluminescent imaging enabled the creation of transgenic animals, such as Firefly Rats. Firefly Rats, created in 2006, ubiquitously express luciferase and have become a critical asset in scientific investigations. These rats have significantly contributed to transplantation and tissue engineering studies. Their low immunogenicity reduces graft rejection risk, making them ideal for long-term tracking of organ/tissue/cellular engraftments. Importantly, in the islet transplantation setting, the ubiquitous luciferase expression in these rats does not alter islet morphology or function, ensuring accurate assessments of engrafted islets. Firefly Rats have illuminated the path of transplantation research worldwide for over a decade and continue accelerating scientific advancements in many fields.


Assuntos
Vaga-Lumes , Transplante das Ilhotas Pancreáticas , Animais , Ratos , Vaga-Lumes/metabolismo , Luciferases , Animais Geneticamente Modificados , Diagnóstico por Imagem , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes
10.
Sci Rep ; 14(1): 12402, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811610

RESUMO

Evaluating the quality of isolated human islets before transplantation is crucial for predicting the success in treating Type 1 diabetes. The current gold standard involves time-intensive in vivo transplantation into diabetic immunodeficient mice. Given the susceptibility of isolated islets to hypoxia, we hypothesized that hypoxia present in islets before transplantation could indicate compromised islet quality, potentially leading to unfavorable outcomes. To test this hypothesis, we analyzed expression of 39 hypoxia-related genes in human islets from 85 deceased donors. We correlated gene expression profiles with transplantation outcomes in 327 diabetic mice, each receiving 1200 islet equivalents grafted into the kidney capsule. Transplantation outcome was post-transplant glycemic control based on area under the curve of blood glucose over 4 weeks. In linear regression analysis, DDIT4 (R = 0.4971, P < 0.0001), SLC2A8 (R = 0.3531, P = 0.0009) and HK1 (R = 0.3444, P = 0.0012) had the highest correlation with transplantation outcome. A multiple regression model of 11 genes increased the correlation (R = 0.6117, P < 0.0001). We conclude that assessing pre-transplant hypoxia in human islets via gene expression analysis is a rapid, viable alternative to conventional in vivo assessments. This approach also underscores the importance of mitigating pre-transplant hypoxia in isolated islets to improve the success rate of islet transplantation.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Animais , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Experimental/terapia , Masculino , Diabetes Mellitus Tipo 1/metabolismo , Hipóxia/metabolismo , Feminino , Hipóxia Celular , Pessoa de Meia-Idade , Glicemia/metabolismo
11.
Cell Transplant ; 33: 9636897241249556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742734

RESUMO

Pancreatic islet transplantation is one of the clinical options for certain types of diabetes. However, difficulty in maintaining islets prior to transplantation limits the clinical expansion of islet transplantations. Our study introduces a dynamic culture platform developed specifically for primary human islets by mimicking the physiological microenvironment, including tissue fluidics and extracellular matrix support. We engineered the dynamic culture system by incorporating our distinctive microwell-patterned porous collagen scaffolds for loading isolated human islets, enabling vertical medium flow through the scaffolds. The dynamic culture system featured four 12 mm diameter islet culture chambers, each capable of accommodating 500 islet equivalents (IEQ) per chamber. This configuration calculates > five-fold higher seeding density than the conventional islet culture in flasks prior to the clinical transplantations (442 vs 86 IEQ/cm2). We tested our culture platform with three separate batches of human islets isolated from deceased donors for an extended period of 2 weeks, exceeding the limits of conventional culture methods for preserving islet quality. Static cultures served as controls. The computational simulation revealed that the dynamic culture reduced the islet volume exposed to the lethal hypoxia (< 10 mmHg) to ~1/3 of the static culture. Dynamic culture ameliorated the morphological islet degradation in long-term culture and maintained islet viability, with reduced expressions of hypoxia markers. Furthermore, dynamic culture maintained the islet metabolism and insulin-secreting function over static culture in a long-term culture. Collectively, the physiological microenvironment-mimetic culture platform supported the viability and quality of isolated human islets at high-seeding density. Such a platform has a high potential for broad applications in cell therapies and tissue engineering, including extended islet culture prior to clinical islet transplantations and extended culture of stem cell-derived islets for maturation.


Assuntos
Colágeno , Ilhotas Pancreáticas , Alicerces Teciduais , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Alicerces Teciduais/química , Porosidade , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Transplante das Ilhotas Pancreáticas/métodos
12.
Cell Transplant ; 32: 9636897231182497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37345228

RESUMO

"Firefly rats" ubiquitously express the luciferase reporter gene under the control of constitutively active ROSA26 promoter in inbred Lewis rats. Due to the minimal immunogenicity of luciferase, wide applications of Firefly rats have been reported in solid organ/cell transplantation studies for in vivo imaging, permitting quantitative and non-invasive tracking of the transplanted graft. ROSA26 is a non-coding gene and generally does not affect the expression of other endogenous genes. However, the effect of ubiquitous luciferase expression on islet morphology and function has not been thoroughly investigated, which is critical for the use of Firefly rats as islet donors in islet transplantation studies. Accordingly, in vivo glucose homeostasis (i.e., islet function in the native pancreas) was compared between age-matched luciferase-expressing Firefly rats and non-luciferase-expressing rats. In vivo assessments demonstrated no statistical difference between these rats in non-fasting blood glucose levels, intraperitoneal glucose tolerance tests, and glucose-stimulated serum C-peptide levels. Furthermore, islets were isolated from both rats to compare the morphology, function, and metabolism in vitro. Isolated islets from both rats exhibited similar in vitro characteristics in post-isolation islet yield, islet size, beta cell populations, insulin content per islet, oxygen consumption rate, and glucose-stimulated insulin secretion. In conclusion, ubiquitous luciferase expression in Firefly rats does not affect their islet morphology, metabolism, and function; this finding is critical and enables the use of isolated islets from Firefly rats for the dual assessment of islet graft function and bioluminescence imaging of islet grafts.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Ratos , Animais , Vaga-Lumes/metabolismo , Ratos Endogâmicos Lew , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Luciferases , Glicemia/metabolismo
13.
Pancreas ; 51(3): 234-242, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35584380

RESUMO

OBJECTIVES: In pancreatic islet transplantation studies, bioluminescence imaging enables quantitative and noninvasive tracking of graft survival. Amid the recent heightened interest in extrahepatic sites for islet and stem cell-derived beta-like cell transplantations, proper understanding the nature of bioluminescence imaging in these sites is important. METHODS: Islets isolated from Firefly rats ubiquitously expressing luciferase reporter gene in Lewis rats were transplanted into subcutaneous or kidney capsule sites of wild-type Lewis rats or immunodeficient mice. Posttransplant changes of bioluminescence signal curves and absorption of bioluminescence signal in transplantation sites were examined. RESULTS: The bioluminescence signal curve dynamically changed in the early posttransplantation phase; the signal was low within the first 5 days after transplantation. A substantial amount of bioluminescence signal was absorbed by tissues surrounding islet grafts, correlating to the depth of the transplanted site from the skin surface. Grafts in kidney capsules were harder to image than those in the subcutaneous site. Within the kidney capsule, locations that minimized depth from the skin surface improved the graft detectability. CONCLUSIONS: Posttransplant phase and graft location/depth critically impact the bioluminescence images captured in islet transplantation studies. Understanding these parameters is critical for reducing experimental biases and proper interpretation of data.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Diagnóstico por Imagem , Sobrevivência de Enxerto , Humanos , Ilhotas Pancreáticas/diagnóstico por imagem , Transplante das Ilhotas Pancreáticas/métodos , Medições Luminescentes/métodos , Camundongos , Ratos , Ratos Endogâmicos Lew
14.
Pharmaceuticals (Basel) ; 15(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35631421

RESUMO

Umbilical cord mesenchymal stem cell-derived extracellular vesicles (UC-MSC-EVs) have become an emerging strategy for treating various autoimmune and metabolic disorders, particularly diabetes. Delivery of UC-MSC-EVs is essential to ensure optimal efficacy of UC-MSC-EVs. To develop safe and superior EVs-based delivery strategies, we explored nuclear techniques including positron emission tomography (PET) to evaluate the delivery of UC-MSC-EVs in vivo. In this study, human UC-MSC-EVs were first successfully tagged with I-124 to permit PET determination. Intravenous (I.V.) and intra-arterial (I.A.) administration routes of [124I]I-UC-MSC-EVs were compared and evaluated by in vivo PET-CT imaging and ex vivo biodistribution in a non-diabetic Lewis (LEW) rat model. For I.A. administration, [124I]I-UC-MSC-EVs were directly infused into the pancreatic parenchyma via the celiac artery. PET imaging revealed that the predominant uptake occurred in the liver for both injection routes, and further imaging characterized clearance patterns of [124I]I-UC-MSC-EVs. For biodistribution, the uptake (%ID/gram) in the spleen was significantly higher for I.V. administration compared to I.A. administration (1.95 ± 0.03 and 0.43 ± 0.07, respectively). Importantly, the pancreas displayed similar uptake levels between the two modalities (0.20 ± 0.06 for I.V. and 0.24 ± 0.03 for I.A.). Therefore, our initial data revealed that both routes had similar delivery efficiency for [124I]I-UC-MSC-EVs except in the spleen and liver, considering that higher spleen uptake could enhance immunomodulatory application of UC-MSC-EVs. These findings could guide the development of safe and efficacious delivery strategies for UC-MSC-EVs in diabetes therapies, in which a minimally invasive I.V. approach would serve as a better delivery strategy. Further confirmation studies are ongoing.

15.
Front Endocrinol (Lausanne) ; 13: 1015063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465665

RESUMO

Background: Transplantation of the human pancreatic islets is a promising approach for specific types of diabetes to improve glycemic control. Although effective, there are several issues that limit the clinical expansion of this treatment, including difficulty in maintaining the quality and quantity of isolated human islets prior to transplantation. During the culture, we frequently observe the multiple islets fusing together into large constructs, in which hypoxia-induced cell damage significantly reduces their viability and mass. In this study, we introduce the microwell platform optimized for the human islets to prevent unsolicited fusion, thus maintaining their viability and mass in long-term cultures. Method: Human islets are heterogeneous in size; therefore, two different-sized microwells were prepared in a 35 mm-dish format: 140 µm × 300 µm-microwells for <160 µm-islets and 200 µm × 370 µm-microwells for >160 µm-islets. Human islets (2,000 islet equivalent) were filtered through a 160 µm-mesh to prepare two size categories for subsequent two week-cultures in each microwell dish. Conventional flat-bottomed 35 mm-dishes were used for non-filtered islets (2,000 islet equivalent/2 dishes). Post-cultured islets are collected to combine in each condition (microwells and flat) for the comparisons in viability, islet mass, morphology, function and metabolism. Islets from three donors were independently tested. Results: The microwell platform prevented islet fusion during culture compared to conventional flat bottom dishes, which improved human islet viability and mass. Islet viability and mass on the microwells were well-maintained and comparable to those in pre-culture, while flat bottom dishes significantly reduced islet viability and mass in two weeks. Morphology assessed by histology, insulin-secreting function and metabolism by oxygen consumption did not exhibit the statistical significance among the three different conditions. Conclusion: Microwell-bottomed dishes maintained viability and mass of human islets for two weeks, which is significantly improved when compared to the conventional flat-bottomed dishes.


Assuntos
Ilhotas Pancreáticas , Humanos , Insulina , Controle Glicêmico , Hipóxia , Consumo de Oxigênio
16.
Biomolecules ; 12(11)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358934

RESUMO

Hypothermic (cold) preservation is a limiting factor for successful cell and tissue transplantation where cell swelling (edema) usually develops, impairing cell function. University of Wisconsin (UW) solution, a standard cold preservation solution, contains effective components to suppress hypothermia-induced cell swelling. Antifreeze proteins (AFPs) found in many cold-adapted organisms can prevent cold injury of the organisms. Here, the effects of a beetle AFP from Dendroides canadensis (DAFP-1) on pancreatic ß-cells preservation were first investigated. As low as 500 µg/mL, DAFP-1 significantly minimized INS-1 cell swelling and subsequent cell death during 4 °C preservation in UW solution for up to three days. However, such significant cytoprotection was not observed by an AFP from Tenebrio molitor (TmAFP), a structural homologue to DAFP-1 but lacking arginine, at the same levels. The cytoprotective effect of DAFP-1 was further validated with the primary ß-cells in the isolated rat pancreatic islets in UW solution. The submilligram level supplement of DAFP-1 to UW solution significantly increased the islet mass recovery after three days of cold preservation followed by rewarming. The protective effects of DAFP-1 in UW solution were discussed at a molecular level. The results indicate the potential of DAFP-1 to enhance cell survival during extended cold preservation.


Assuntos
Besouros , Animais , Ratos , Besouros/química , Besouros/metabolismo , Sobrevivência Celular , alfa-Fetoproteínas/farmacologia , Proteínas Anticongelantes/química , Glutationa/farmacologia , Insulina/farmacologia , Edema
17.
Biofabrication ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36537072

RESUMO

The need for maintaining cell-spheroid viability and function within high-density cultures is unmet for various clinical and experimental applications, including cell therapies. One immediate application is for transplantation of pancreatic islets, a clinically recognized treatment option to cure type 1 diabetes; islets are isolated from a donor for subsequent culture prior to transplantation. However, high seeding conditions cause unsolicited fusion of multiple spheroids, thereby limiting oxygen diffusion to induce hypoxic cell death. Here we introduce a culture dish incorporating a micropyramid-patterned surface to prevent the unsolicited fusion and oxygen-permeable bottom for optimal oxygen environment. A 400µm-thick, oxygen-permeable polydimethylsiloxane sheet topped with micropyramid pattern of 400µm-base and 200µm-height was fabricated to apply to the 24-well plate format. The micropyramid pattern separated the individual pancreatic islets to prevent the fusion of multiple islets. This platform supported the high oxygen demand of islets at high seeding density at 260 islet equivalents cm-2, a 2-3-fold higher seeding density compared to the conventional islet culture used in a preparation for the clinical islet transplantations, demonstrating improved islet morphology, metabolism and function in a 4 d-culture. Transplantation of these islets into immunodeficient diabetic mice exhibited significantly improved engraftment to achieve euglycemia compared to islets cultured in the conventional culture wells. Collectively, this simple design modification allows for high-density cultures of three-dimensional cell spheroids to improve the viability and function for an array of investigational and clinical replacement tissues.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Camundongos , Animais , Oxigênio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Hipóxia/metabolismo
18.
Mol Imaging Biol ; 23(2): 173-179, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33140260

RESUMO

PURPOSE: The transplantation of pancreatic islets is a promising cell replacement therapy for type 1 diabetes. Subcutaneous islet transplantation is currently under investigation as a means to circumvent problems associated with standard intra-hepatic islet transplantation. As modifications are being developed to improve the efficacy of subcutaneous islet transplantation, it is important to have robust methods to assess engraftment. Experimentally, ATP-dependent bioluminescence imaging using luciferase reporter genes has been effective for non-invasively tracking engraftment. However, it was heretofore unknown if the bioluminescence of subcutaneously transplanted luciferase-expressing islet grafts correlates with diabetes reversal, a primary outcome of transplantation. PROCEDURES: A retrospective analysis was conducted using data obtained from subcutaneous islet transplantations in Lewis rats. The analysis included transplantations from our laboratory in which islet donors were transgenic rats ubiquitously expressing luciferase and recipients were wild type, streptozotocin-induced diabetic rats. Data from 79 bioluminescence scans were obtained from 27 islet transplantations during the post-transplant observation period (up to 6 weeks). The bioluminescence intensity of the subcutaneously transplanted grafts, captured after the intravenous administration of luciferin, was correlated with diabetes reversal. RESULTS: After subcutaneous transplantation, islet bioluminescence decreased over time, dropping > 50 % from 1 to 3 weeks post-transplant. Bioluminescence intensity in the early post-transplant phase (1-2 weeks) correlated with the subsequent reversal of diabetes; based on optimized bioluminescence cutoff values, the bioluminescence intensity of islets at 1 and 2 weeks predicted successful transplantations. However, intensity in the late post-transplant phase (≥ 4 weeks) did not reflect transplantation outcomes. CONCLUSIONS: Early-phase bioluminescence imaging of luciferase-expressing islets could serve as a useful tool to predict the success of subcutaneous islet transplantations by preceding changes in glucose homeostasis.


Assuntos
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Glucose/metabolismo , Sobrevivência de Enxerto/fisiologia , Transplante das Ilhotas Pancreáticas/métodos , Luciferases/metabolismo , Tela Subcutânea/transplante , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Medições Luminescentes/métodos , Masculino , Ratos , Ratos Endogâmicos Lew , Estudos Retrospectivos
19.
Cell Transplant ; 30: 9636897211052291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34628956

RESUMO

Prior to transplantation into individuals with type 1 diabetes, in vitro assays are used to evaluate the quality, function and survival of isolated human islets. In addition to the assessments of these parameters in islet, they can be evaluated by multiparametric morphological scoring (0-10 points) and grading (A, B, C, D, and F) based on islet characteristics (shape, border, integrity, single cells, and diameter). However, correlation between the multiparametric assessment and transplantation outcome has not been fully elucidated. In this study, 55 human islet isolations were scored using this multiparametric assessment. The results were correlated with outcomes after transplantation into immunodeficient diabetic mice. In addition, the multiparametric assessment was compared with oxygen consumption rate of isolated islets as a potential prediction factor for successful transplantations. All islet batches were assessed and found to score: 9 points (n = 18, Grade A), 8 points (n = 19, Grade B), and 7 points (n = 18, Grade B). Islets that scored 9 (Grade A), scored 8 (Grade B) and scored 7 (Grade B) were transplanted into NOD/SCID mice and reversed diabetes in 81.2%, 59.4%, and 33.3% of animals, respectively (P < 0.0001). Islet scoring and grading correlated well with glycemic control post-transplantation (P < 0.0001) and reversal rate of diabetes (P < 0.05). Notably, islet scoring and grading showed stronger correlation with transplantation outcome compared to oxygen consumption rate. Taken together, a multiparametric assessment of isolated human islets was highly predictive of transplantation outcome in diabetic mice.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Transplante das Ilhotas Pancreáticas/métodos , Animais , Humanos , Camundongos , Camundongos SCID , Estudos Retrospectivos , Resultado do Tratamento
20.
Cell Transplant ; 29: 963689720919444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410459

RESUMO

In clinical and experimental human pancreatic islet transplantations, establishing pretransplant assessments that accurately predict transplantation outcomes is crucial. Conventional in vitro viability assessment that relies on manual counting of viable islets is a routine pretransplant assessment. However, this method does not correlate with transplantation outcomes; to improve the method, we recently introduced a semi-automated method using imaging software to objectively determine area-based viability. The goal of the present study was to correlate semi-automated viability assessment with posttransplantation outcomes of human islet transplantations in diabetic immunodeficient mice, the gold standard for in vivo functional assessment of isolated human islets. We collected data from 61 human islet isolations and 188 subsequent in vivo mouse transplantations. We assessed islet viability by fluorescein diacetate and propidium iodide staining using both the conventional and semi-automated method. Transplantations of 1,200 islet equivalents under the kidney capsule were performed in streptozotocin-induced diabetic immunodeficient mice. Among the pretransplant variables, including donor factors and post-isolation assessments, viability measured using the semi-automated method demonstrated a strong influence on in vivo islet transplantation outcomes in multivariate analysis. We calculated an optimized cutoff value (96.1%) for viability measured using the semi-automated method and showed a significant difference in diabetes reversal rate for islets with viability above this cutoff (77% reversal) vs. below this cutoff (49% reversal). We performed a detailed analysis to show that both the objective measurement and the improved area-based scoring system, which distinguished between small and large islets, were key features of the semi-automated method that allowed for precise evaluation of viability. Taken together, our results suggest that semi-automated viability assessment offers a promising alternative pretransplant assessment over conventional manual assessment to predict human islet transplantation outcomes.


Assuntos
Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas/métodos , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA