Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
AAPS PharmSciTech ; 23(6): 192, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819539

RESUMO

The purpose of this study was to develop a validated LC-MS/MS analytical method for the simultaneous analysis of a large cassette containing a wide range of drug substances with positive, negative, or neutral charge and further apply the method to assess octanol partition coefficient and eye tissue recovery of the drug cassette. A twenty-seven-drug cassette (N-in-one) including beta blockers, NSAIDs, and corticosteroids that range from extremely hydrophilic (sotalol) to very hydrophobic (triamcinolone hexacetanide) was used to develop an LC-MS/MS assay using QTrap 4500. An LC-MS/MS method based on gradient elution, with an eighteen-minute run time including equilibration time, was developed and validated for the rapid and simultaneous quantitation of drugs with a wide range of lipophilicities. Scheduled multiple reaction monitoring was used to maximize the scan time for each peak, ensuring sufficient scans. Method validation included lower limit of quantitation (LLOQ) and intra- and inter-day reproducibility. The LLOQ ranged from 0.5 (sotalol) to 40 fmols (dexamethasone) on column with a %RSD < 20%. The method was tested by measuring octanol:water and octanol:buffer (PBS, pH 7.4) partition coefficients and by quantitation of the drug cassette extracted from rabbit aqueous humor and cornea. Measured partition coefficients correlated positively with predicted values (r2=0.5-0.7). Drug recovery was ≥ 79% from aqueous humor and between 61 and 67% on average from cornea. A rapid, sensitive LC-MS/MS method suitable for N-in-one drug delivery screening was developed for simultaneous quantification of twenty-seven drugs in aqueous solutions and eye tissues.


Assuntos
Sotalol , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida/métodos , Octanóis , Preparações Farmacêuticas , Coelhos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
2.
AAPS PharmSciTech ; 20(8): 320, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31646399

RESUMO

The in vitro drug release in an aqueous medium is a critical performance metric for a sustained release drug product. During long-term release studies, drugs may degrade in the release medium, and such degradation can lead to errors in drug release quantitation. Using dexamethasone as a model drug and LC-MS/MS methods employing dexamethasone-d4 as an internal standard, this study identified that dexamethasone can degrade into 13 major degradation products in phosphate buffered saline (PBS) as a function of time, temperature (25, 37, and 45°C), and light exposure. A putative scheme for dexamethasone degradation pathways in PBS has been proposed. In proof-of-concept studies, the analytical method was used to quantitate dexamethasone and its degradation products during in vitro release studies with sustained release dexamethasone-poly(D,L-lactide-co-glycolide) (PLGA) implants incubated in phosphate buffer saline (PBS). Further, mathematical approaches were developed to estimate drug release from implants after accounting for drug degradation in PBS. The LC-MS/MS analytical method and the mathematical approaches developed could be used for assessing the stability and/or release of dexamethasone during manufacturing, storage, and use of various dosage forms.


Assuntos
Anti-Inflamatórios/farmacocinética , Dexametasona/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Água/metabolismo , Anti-Inflamatórios/administração & dosagem , Cromatografia Líquida/métodos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Dexametasona/administração & dosagem , Implantes de Medicamento , Liberação Controlada de Fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Espectrometria de Massas em Tandem/métodos
3.
J Cell Biochem ; 119(10): 8460-8471, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30054947

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision loss among working-age adults. The interplay between hyperglycemia and endothelial activation in inducing endoplasmic reticulum (ER) stress pathways and visual deficits in DR is not fully understood. To address this, we used a mouse model of chronic vascular activation using endothelial-specific tumor necrosis factor-α (TNF-α)-expressing (tie2-TNF) mice to induce diabetes with streptozotocin. At 4 weeks post streptozotocin, a significant 2-fold to 10-fold increase in retinal neurovascular inflammatory gene transcript response in tie2-TNF mice was further increased in diabetic tie2-TNF mice. A decrease in visual acuity and scotopic b-wave amplitude in tie2-TNF mice was further accentuated in diabetic tie2-TNF mice and these changes correlated with a multi-fold increase in retinal ER stress markers and a reduction in adherens junctions. Cultured retinal endothelial cells showed a significant decrease in trans-endothelial resistance as well as VE-cadherin expression under TNF-α and high glucose stress. These changes were partly rescued by tauroursodeoxycholic acid, a potent ER stress inhibitor. Taken together, constant endothelial activation induced by TNF-α further exacerbated by hyperglycemia results in activation of ER stress and chronic proinflammation in a feed forward loop ultimately resulting in endothelial junction protein alterations leading to visual deficits in the retina. Inhibition of ER stress and endothelial activation may prove to be a novel therapeutic target in DR.


Assuntos
Retinopatia Diabética/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Análise de Variância , Animais , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Modelos Animais de Doenças , Eletrorretinografia , Expressão Gênica , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor TIE-2/genética , Retina/patologia , Estreptozocina , Acuidade Visual/fisiologia
4.
Am J Physiol Lung Cell Mol Physiol ; 315(4): L584-L594, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30024304

RESUMO

MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression in many diseases, although the contribution of miRNAs to the pathophysiology of lung injury remains obscure. We hypothesized that dysregulation of miRNA expression drives the changes in key genes implicated in the development of lung injury. To test our hypothesis, we utilized a model of lung injury induced early after administration of intratracheal bleomycin (0.1 U). Wild-type mice were treated with bleomycin or PBS, and lungs were collected at 4 or 7 days. A profile of lung miRNA was determined by miRNA array and confirmed by quantitative PCR and flow cytometry. Lung miR-26a was significantly decreased 7 days after bleomycin injury, and, on the basis of enrichment of predicted gene targets, it was identified as a putative regulator of cell adhesion, including the gene targets EphA2, KDR, and ROCK1, important in altered barrier function. Lung EphA2 mRNA, and protein increased in the bleomycin-injured lung. We further explored the miR-26a/EphA2 axis in vitro using human lung microvascular endothelial cells (HMVEC-L). Cells were transfected with miR-26a mimic and inhibitor, and expression of gene targets and permeability was measured. miR-26a regulated expression of EphA2 but not KDR or ROCK1. Additionally, miR-26a inhibition increased HMVEC-L permeability, and the disrupted barrier integrity due to miR-26a was blocked by EphA2 knockdown, shown by VE-cadherin staining. Our data suggest that miR-26a is an important epigenetic regulator of EphA2 expression in the pulmonary endothelium. As such, miR-26a may represent a novel therapeutic target in lung injury by mitigating EphA2-mediated changes in permeability.


Assuntos
Endotélio Vascular/patologia , Lesão Pulmonar/patologia , MicroRNAs/genética , Receptor EphA2/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Permeabilidade da Membrana Celular , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor EphA2/genética
5.
Handb Exp Pharmacol ; 242: 57-93, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27783270

RESUMO

Although the eye is an accessible organ for direct drug application, ocular drug delivery remains a major challenge due to multiple barriers within the eye. Key barriers include static barriers imposed by the cornea, conjunctiva, and retinal pigment epithelium and dynamic barriers including tear turnover and blood and lymphatic clearance mechanisms. Systemic administration by oral and parenteral routes is limited by static blood-tissue barriers that include epithelial and endothelial layers, in addition to rapid vascular clearance mechanisms. Together, the static and dynamic barriers limit the rate and extent of drug delivery to the eye. Thus, there is an ongoing need to identify novel delivery systems and approaches to enhance and sustain ocular drug delivery. This chapter summarizes current and recent experimental approaches for drug delivery to the anterior and posterior segments of the eye.


Assuntos
Sistemas de Liberação de Medicamentos , Oftalmopatias/tratamento farmacológico , Olho/efeitos dos fármacos , Humanos
6.
Arterioscler Thromb Vasc Biol ; 35(4): 855-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25657312

RESUMO

OBJECTIVE: The deficiency of very low-density lipoprotein receptor resulted in Wnt signaling activation and neovascularization in the retina. The present study sought to determine whether the very low-density lipoprotein receptor extracellular domain (VLN) is responsible for the inhibition of Wnt signaling in ocular tissues. APPROACH AND RESULTS: A plasmid expressing the soluble VLN was encapsulated with poly(lactide-co-glycolide acid) to form VLN nanoparticles (VLN-NP). Nanoparticles containing a plasmid expressing the low-density lipoprotein receptor extracellular domain nanoparticle were used as negative control. MTT, modified Boyden chamber, and Matrigel (™) assays were used to evaluate the inhibitory effect of VLN-NP on Wnt3a-stimulated endothelial cell proliferation, migration, and tube formation. Vldlr(-/-) mice, oxygen-induced retinopathy, and alkali burn-induced corneal neovascularization models were used to evaluate the effect of VLN-NP on ocular neovascularization. Wnt reporter mice (BAT-gal), Western blotting, and luciferase assay were used to evaluate Wnt pathway activity. Our results showed that VLN-NP specifically inhibited Wnt3a-induced endothelial cell proliferation, migration, and tube formation. Intravitreal injection of VLN-NP inhibited abnormal neovascularization in Vldlr(-/-), oxygen-induced retinopathy, and alkali burn-induced corneal neovascularization models, compared with low-density lipoprotein receptor extracellular domain nanoparticle. VLN-NP significantly inhibited the phosphorylation of low-density lipoprotein receptor-related protein 6, the accumulation of ß-catenin, and the expression of vascular endothelial growth factor in vivo and in vitro. CONCLUSIONS: Taken together, these results suggest that the soluble VLN is a negative regulator of the Wnt pathway and has antiangiogenic activities. Nanoparticle-mediated expression of VLN may thus represent a novel therapeutic approach to treat pathological ocular angiogenesis and potentially other vascular diseases affected by Wnt signaling.


Assuntos
Córnea/irrigação sanguínea , Neovascularização da Córnea/prevenção & controle , Ácido Láctico/química , Nanopartículas , Ácido Poliglicólico/química , Receptores de LDL/metabolismo , Neovascularização Retiniana/prevenção & controle , Vasos Retinianos/metabolismo , Transfecção/métodos , Via de Sinalização Wnt , Proteína Wnt3A/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Neovascularização da Córnea/genética , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/fisiopatologia , Modelos Animais de Doenças , Humanos , Injeções Intravítreas , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Interferência de RNA , Ratos Sprague-Dawley , Receptores de LDL/genética , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/fisiopatologia , Vasos Retinianos/fisiopatologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Wnt3A/genética , beta Catenina/metabolismo
7.
J Nanobiotechnology ; 14(1): 47, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27328938

RESUMO

BACKGROUND: Human antigen R (HuR) is an RNA binding protein that is overexpressed in many human cancers, including lung cancer, and has been shown to regulate the expression of several oncoproteins. Further, HuR overexpression in cancer cells has been associated with poor-prognosis and therapy resistance. Therefore, we hypothesized that targeted inhibition of HuR in cancer cells should suppress several HuR-regulated oncoproteins resulting in an effective anticancer efficacy. To test our hypothesis, in the present study we investigated the efficacy of folate receptor-α (FRA)-targeted DOTAP:Cholesterol lipid nanoparticles carrying HuR siRNA (HuR-FNP) against human lung cancer cells. RESULTS: The therapeutic efficacy of HuR-FNP was tested in FRA overexpressing human H1299 lung cancer cell line and compared to normal lung fibroblast (CCD16) cells that had low to no FRA expression. Physico-chemical characterization studies showed HuR-FNP particle size was 303.3 nm in diameter and had a positive surface charge (+4.3 mV). Gel retardation and serum stability assays showed that the FNPs were efficiently protected siRNA from rapid degradation. FNP uptake was significantly higher in H1299 cells compared to CCD16 cells indicating a receptor-dose effect. The results of competitive inhibition studies in H1299 cells demonstrated that HuR-FNPs were efficiently internalized via FRA-mediated endocytosis. Biologic studies demonstrated HuR-FNP but not C-FNP (control siRNA) induced G1 phase cell-cycle arrest and apoptosis in H1299 cells resulting in significant growth inhibition. Further, HuR-FNP exhibited significantly higher cytotoxicity against H1299 cells than it did against CCD16 cells. The reduction in H1299 cell viability was correlated with a marked decrease in HuR mRNA and protein expression. Further, reduced expression of HuR-regulated oncoproteins (cyclin D1, cyclin E, and Bcl-2) and increased p27 tumor suppressor protein were observed in HuR-FNP-treated H1299 cells but not in C-FNP-treated cells. Finally, cell migration was significantly inhibited in HuR-FNP-treated H1299 cells compared to C-FNP. CONCLUSIONS: Our results demonstrate that HuR is a molecular target for lung cancer therapy and its suppression using HuR-FNP produced significant therapeutic efficacy in vitro.


Assuntos
Proteína Semelhante a ELAV 1/genética , Receptor 1 de Folato/metabolismo , Neoplasias Pulmonares/terapia , RNA Interferente Pequeno/uso terapêutico , Terapêutica com RNAi , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colesterol/química , Colesterol/metabolismo , Sistemas de Liberação de Medicamentos , Receptor 1 de Folato/genética , Ácido Fólico/química , Ácido Fólico/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanopartículas/química , Nanopartículas/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética
8.
J Biol Chem ; 288(24): 17372-83, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23640891

RESUMO

For vision-threatening retinitis pigmentosa and dry age-related macular degeneration, there are no United States Food and Drug Administration (FDA)-approved treatments. We identified, biosynthesized, purified, and characterized lens epithelium-derived growth factor fragment (LEDGF1-326) as a novel protein therapeutic. LEDGF1-326 was produced at about 20 mg/liter of culture when expressed in the Escherichia coli system, with about 95% purity and aggregate-free homogeneous population with a mean hydrodynamic diameter of 9 ± 1 nm. The free energy of unfolding of LEDGF1-326 was 3.3 ± 0.5 kcal mol(-1), and melting temperature was 44.8 ± 0.2 °C. LEDGF1-326 increased human retinal pigment epithelial cell viability from 48.3 ± 5.6 to 119.3 ± 21.1% in the presence of P23H mutant rhodopsin-mediated aggregation stress. LEDGF1-326 also increased retinal pigment epithelial cell FluoSphere uptake to 140 ± 10%. Eight weeks after single intravitreal injection in Royal College of Surgeons (RCS) rats, LEDGF1-326 increased the b-wave amplitude significantly from 9.4 ± 4.6 to 57.6 ± 8.8 µV for scotopic electroretinogram and from 10.9 ± 5.6 to 45.8 ± 15.2 µV for photopic electroretinogram. LEDGF1-326 significantly increased the retinal outer nuclear layer thickness from 6.34 ± 1.6 to 11.7 ± 0.7 µm. LEDGF1-326 is a potential new therapeutic agent for treating retinal degenerative diseases.


Assuntos
Atrofia Geográfica/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Retinose Pigmentar/tratamento farmacológico , Animais , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Clonagem Molecular , Eletrorretinografia , Atrofia Geográfica/patologia , Humanos , Injeções Intraoculares , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/isolamento & purificação , Luz , Peso Molecular , Tamanho da Partícula , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/isolamento & purificação , Fagocitose/efeitos dos fármacos , Estabilidade Proteica , Estrutura Secundária de Proteína , Ratos , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Retinose Pigmentar/patologia , Espalhamento de Radiação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico
9.
Exp Eye Res ; 122: 77-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24667088

RESUMO

TNF-α induces loss of barrier integrity of the corneal endothelium through mechanisms involving the activation of p38 MAP kinase. This study has investigated the role of matrix metalloproteinase-9 (MMP-9), known to be activated by mechanisms downstream of p38 MAP kinase, on the breakdown of the barrier integrity. Experiments were performed with primary cultures of bovine corneal endothelium. Changes in the trans-endothelial electrical resistance (TER), a measure of barrier integrity, were measured by electric cell-substrate impedance sensing. The integrity of the apical junctional assembly was imaged by immunolocalization of ZO-1. MMP-9 activity in the conditioned medium of cells treated with TNF-α was visualized by gelatin zymography. Transcriptional activation of MMP-9 was assessed by real-time RT-PCR. Exposure to TNF-α led to significant disruption of ZO-1 and also caused a continuous decline in TER for more than 20 h. These effects were opposed by cycloheximide (protein synthesis inhibitor), GM-6001 (broad spectrum inhibitor of MMPs), minocycline (MMP-2 and MMP-9 inhibitor), and MMP-9 inhibitor I (selective MMP-9 inhibitor). Cycloheximide, GM-6001, and MMP-9 inhibitor I also attenuated the increase in permeability to FITC-dextran (10 kDa). In addition, TNF-α led to an increased MMP-9 activity in the conditioned medium as well as a nearly 20-fold increase in mRNA for MMP-9 but not for MMP-2. The functional activity and increase in mRNA levels of MMP-9 were blocked by SB-203580 (selective p38 MAP kinase inhibitor) and cycloheximide. In conclusion, transcriptional and translational activation of MMP-9, downstream of p38 MAP kinase signaling, is involved in the (TNF-α)-induced loss of corneal endothelial barrier integrity.


Assuntos
Endotélio Corneano/efeitos dos fármacos , Metaloproteinase 9 da Matriz/fisiologia , Junções Íntimas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , Bovinos , Células Cultivadas , Cicloeximida/farmacologia , Dextranos/metabolismo , Impedância Elétrica , Endotélio Corneano/enzimologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Regulação da Expressão Gênica/fisiologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Junções Íntimas/enzimologia , Proteína da Zônula de Oclusão-1/metabolismo
10.
Biomed Pharmacother ; 170: 116037, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128184

RESUMO

Chromodomain helicase DNA-binding protein 1 like (CHD1L) is an oncogene that promotes tumor progression, metastasis, and multidrug resistance. CHD1L expression is indicative of poor outcomes and low survival in cancer patients with various cancer types. Herein, we report a set of CHD1L inhibitors (CHD1Li) discovered from high-throughput screening and evaluated using enzyme inhibition, 3D tumor organoid cytotoxicity and mechanistic assays. The structurally distinct compounds 8-11 emerged as hits with promising bioactivity by targeting CHD1L. CHD1Li were further examined for their stability in human and mouse liver microsomes, which showed compounds 9 and 11 to be the most metabolically stable. Additionally, molecular modeling studies of CHD1Li with the target protein shed light on key pharmacophore features driving CHD1L binding. Taken together, these results expand the chemical space of CHD1Li as a potential targeted therapy for colorectal cancer and other cancers.


Assuntos
Proteínas de Ligação a DNA , Neoplasias , Humanos , Animais , Camundongos , Proteínas de Ligação a DNA/metabolismo , DNA Helicases/metabolismo , Neoplasias/tratamento farmacológico
11.
Pharmaceutics ; 16(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39065592

RESUMO

Developing bioequivalent (BE) generic products of complex dosage forms like intravitreal implants (IVIs) of corticosteroids such as dexamethasone prepared using hot-melt extrusion (HME), based on biodegradable poly (lactide-co-glycolide) (PLGA) polymers, can be challenging. A better understanding of the relationship between the physicochemical and physicomechanical properties of IVIs and their effect on drug release and ocular bioavailability is crucial to develop novel BE approaches. It is possible that the key physicochemical and physicomechanical properties of IVIs such as drug properties, implant surface roughness, mechanical strength and toughness, and implant erosion could vary for different compositions, resulting in changes in drug release. Therefore, this study investigated the hypothesis that biodegradable ophthalmic dexamethasone-loaded implants with 20% drug and 80% PLGA polymer(s) prepared using single-pass hot-melt extrusion (HME) differ in physicochemical and/or physicomechanical properties and drug release depending on their PLGA polymer composition. Acid end-capped PLGA was mixed with an ester end-capped PLGA to make three formulations: HME-1, HME-2, and HME-3, containing 100%, 80%, and 60% w/w of the acid end-capped PLGA. Further, this study compared the drug release between independent batches of each composition. In vitro release tests (IVRTs) indicated that HME-1 implants can be readily distinguished by their release profiles from HME-2 and HME-3, with the release being similar for HME-2 and HME-3. In the early stages, drug release generally correlated well with polymer composition and implant properties, with the release increasing with PLGA acid content (for day-1 release, R2 = 0.80) and/or elevated surface roughness (for day-1 and day-14 release, R2 ≥ 0.82). Further, implant mechanical strength and toughness correlated inversely with PLGA acid content and day-1 drug release. Drug release from independent batches was similar for each composition. The findings of this project could be helpful for developing generic PLGA polymer-based ocular implant products.

12.
Mol Vis ; 19: 1198-210, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23734089

RESUMO

PURPOSE: First, to determine the influence of drug lipophilicity (using eight beta-blockers) and molecular weight (using 4 kDa and 40 kDa fluoroscein isothiocyanate [FITC]-dextrans) on suprachoroidal delivery to the posterior segment of the eye by using a rabbit ex vivo eye model. Second, to determine whether drug distribution differs between the dosed and undosed side of the eye following suprachoroidal delivery. Third, to compare the suprachoroidal delivery of sodium fluorescein (NaF) with the intracameral and intravitreal routes by using noninvasive fluorophotometry. METHODS: Using a small hypodermic 26G needle (3/8") with a short bevel (250 µm), location of the suprachoroidal injection in an ex vivo New Zealand white rabbit eye model was confirmed with India ink. Ocular tissue distribution of NaF (25 µl of 1.5 µg/ml) at 37 °C was monitored noninvasively using the Fluorotron Master(TM) at 0, 1, and 3 h following suprachoroidal, intravitreal, or intracameral injections in ex vivo rabbit eyes. For assessing the influence of lipophilicity and molecular size, 25 µl of a mixture of eight beta-blockers (250 µg/ml each) or FITC-dextran (4 kDa and 40 kDa, 30 mg/ml) was injected into the suprachoroidal space of excised rabbit eyes and incubated at 37 °C. Eyes were incubated for 1 and 3 h, and frozen at the end of incubation. Ocular tissues were isolated in frozen condition. Beta-blocker and FITC-dextran levels in excised ocular tissue were measured by liquid chromatography-tandem mass spectrometry and spectrofluorometry, respectively. RESULTS: Histological sections of India ink-injected albino rabbit eye showed the localization of dye as a black line in the suprachoroidal space. Suprachoroidal injection of NaF showed signal localization to the choroid and retina at 1 and 3 h post injection when compared with intravitreal and intracameral injections. Drug delivery to the vitreous after suprachoroidal injection decreased with an increase in solute lipophilicity and molecular weight. With an increase in drug lipophilicity, drug levels in the choroid-retinal pigment epithelium (RPE) and retina generally increased with some exceptions. Beta-blockers and FITC-dextrans were localized more to the dosed side when compared to the opposite side of the sclera, choroid-RPE, retina, and vitreous. These differences were greater for FITC-dextrans as compared to the beta-blockers. CONCLUSIONS: The suprachoroidal route of injection allows localized delivery to the choroid-RPE and retina for small as well as large molecules. Suprachoroidal drug delivery to the vitreous declines with an increase in drug lipophilicity and molecular weight. Drug delivery differs between the dosed and opposite sides following suprachoroidal injection, at least up to 3 h.


Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/farmacologia , Corioide/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Animais , Carbono/farmacologia , Dextranos/farmacocinética , Vias de Administração de Medicamentos , Fluoresceína/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Fluorofotometria , Técnicas In Vitro , Injeções Intravítreas , Modelos Animais , Coelhos , Retina/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos
13.
Drug Metab Dispos ; 41(2): 466-74, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23169611

RESUMO

Since there is paucity of information on solute transporters in human ocular tissues, the aim of this study was immunohistochemical and functional characterization of peptide transporters (PEPT), organic cation transporters (OCTs), neutral and basic amino acid transporters (ATB(0,+)), and monocarboxylate transporters (MCTs) in human ocular barriers. Immunohistochemical localization of transporters was achieved using 5-µm-thick paraffin-embedded sections of whole human eyes. In vitro transport studies were carried out across human cornea and sclera-choroid-retinal pigment epithelium (SCRPE) using a cassette of specific substrates in the presence and absence of inhibitors to determine the role of transporters in transtissue solute delivery. Immunohistochemistry showed the expression of PEPT-1, PEPT-2, ATB(0,+), OCT-1, OCT-2, MCT-1, and MCT-3 in human ocular tissues. PEPT-1, PEPT-2, OCT-1, MCT-1, and ATB(0,+) expression was evident in the cornea, conjunctiva, ciliary epithelium, and neural retina. Expression of PEPT-1, PEPT-2, and OCT-1 was evident in choroid tissue as well. OCT-2 expression could be seen in the corneal and conjunctival epithelia, whereas MCT-3 expression was confined to the RPE layer. OCT-2 expression was evident in conjunctival blood vessel walls, whereas PEPT-1, PEPT-2, and OCT-1 were expressed in the choroid. Preliminary transport studies indicated inward transport of Gly-Sar (PEPT substrate), 1-methyl-4-phenylpyridinium (MPP+) (OCT substrate), and l-tryptophan (ATB(0,+) substrate) across cornea as well as SCRPE. For phenylacetic acid (MCT substrate), transporter-mediated inward transport across the cornea and outward transport across SCRPE were evident. Thus, PEPT, OCT, and ATB(0,+) are influx transporters present in human ocular barriers, and they can potentially be used for transporter-guided retinal drug delivery after topical, transscleral, and systemic administrations.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Olho/metabolismo , Imuno-Histoquímica , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Simportadores/metabolismo , Idoso , Idoso de 80 Anos ou mais , Sistemas de Transporte de Aminoácidos Básicos/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Transporte Biológico , Corioide/metabolismo , Córnea/metabolismo , Olho/efeitos dos fármacos , Feminino , Humanos , Cinética , Masculino , Moduladores de Transporte de Membrana/farmacologia , Pessoa de Meia-Idade , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Inclusão em Parafina , Epitélio Pigmentado da Retina/metabolismo , Esclera/metabolismo , Simportadores/antagonistas & inibidores
14.
Mol Pharm ; 10(12): 4676-86, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24131101

RESUMO

Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9-fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Fluor 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases.


Assuntos
Anticorpos Monoclonais Humanizados/química , Nanopartículas/química , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Bevacizumab , Dióxido de Carbono/química , Olho/efeitos dos fármacos , Ácido Láctico/química , Tamanho da Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Pressão , Ratos , Solventes/química
15.
Mol Pharm ; 10(8): 2858-67, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23734705

RESUMO

A light-activated polycaprolactone dimethacrylate (PCM) and hydroxyethyl methacrylate (HEMA) based gel network was developed to sustain the release of stable, active bevacizumab (an anti-VEGF antibody used to treat choroidal neovascularization) and used to assess sustained ex vivo delivery in rabbit eyes and in vivo delivery in rat eyes following in situ gel formation in the suprachoroidal space. PCM was synthesized from polycaprolactone diol (PCD) and evaluated using NMR spectroscopy. PCM was used to cross-link HEMA in the presence of 365 nm UV light and 2,2-dimethoxy-2-phenylacetophenone (DMPA) as a photoinitiator. Bevacizumab was entrapped in the gel using three different cross-linking durations of 3, 7, and 10 min. In vitro release of bevacizumab in PBS pH 7.4 at 37 °C during a 4 month study was quantified using a VEGF-binding based ELISA. The stability of released bevacizumab was monitored by size exclusion chromatography (SEC) and circular dichroism. Alexa Fluor 488 dye conjugated bevacizumab mixed with polymers was injected suprachoroidally in rabbit eyes to study the effect of different cross-linking durations on the spread of the dye conjugated bevacizumab. In vivo delivery was assessed in Sprague-Dawley (SD) rats by injecting Alexa Fluor 488 dye conjugated bevacizumab mixed with polymers followed by cross-linking for 10 min. Spread in the rabbit eyes and in vivo delivery in rat eyes was monitored noninvasively using a fundus camera and Fluorotron Master. The formation of PCM was confirmed by the disappearance of hydroxyl peak in NMR spectra. A cross-linking duration of 10 min resulted in a burst release of 21% of bevacizumab. Other cross-linking durations had ≥62% burst release. Bevacizumab release from 10 min cross-linked gel was sustained for ∼4 months. Release samples contained ≥96.1% of bevacizumab in the monomeric form as observed in SEC chromatograms. Circular dichroism confirmed that secondary ß-sheet structure of bevacizumab was maintained after release from the gel. As the cross-linking duration was increased to 10 min, the gel/antibody was better confined at the injection site in excised rabbit eye suprachoroidal space. Delivery of Alexa Fluor 488 dye conjugated bevacizumab was sustained for at least 60 days in the suprachoroidal space of SD rats. PCM and HEMA gel sustained bevacizumab release for 4 months and maintained the stability and VEGF-binding activity of bevacizumab. Therefore, light-activated PCM and HEMA gel is suitable for in situ gel formation and sustained protein delivery in the suprachoroidal space.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/química , Luz , Polímeros/química , Acetofenonas/química , Animais , Bevacizumab , Cromatografia em Gel , Dicroísmo Circular , Ensaio de Imunoadsorção Enzimática , Espectroscopia de Ressonância Magnética , Camundongos , Poliésteres/química , Coelhos , Ratos , Ratos Sprague-Dawley
16.
Mol Pharm ; 10(6): 2350-61, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23607566

RESUMO

Chronic hypoxia, a key stimulus for neovascularization, has been implicated in the pathology of proliferative diabetic retinopathy, retinopathy of prematurity, and wet age related macular degeneration. The aim of the present study was to determine the effect of chronic hypoxia on drug transporter mRNA expression and activity in ocular barriers. Sprague-Dawley rats were exposed to hypobaric hypoxia (PB = 380 mmHg) for 6 weeks, and neonatal calves were maintained under hypobaric hypoxia (PB = 445 mmHg) for 2 weeks. Age matched controls for rats, and calves were maintained at ambient altitude and normoxia. The effect of hypoxia on transporter expression was analyzed by qRT-PCR analysis of transporter mRNA expression in hypoxic and control rat choroid-retina. The effect of hypoxia on the activity of PEPT, OCT, ATB(0+), and MCT transporters was evaluated using in vitro transport studies of model transporter substrates across calf cornea and sclera-choroid-RPE (SCRPE). Quantitative gene expression analysis of 84 transporters in rat choroid-retina showed that 29 transporter genes were up regulated or down regulated by ≥1.5-fold in hypoxia. Nine ATP binding cassette (ABC) families of efflux transporters including MRP3, MRP4, MRP5, MRP6, MRP7, Abca17, Abc2, Abc3, and RGD1562128 were up-regulated. For solute carrier family transporters, 11 transporters including SLC10a1, SLC16a3, SLC22a7, SLC22a8, SLC29a1, SLC29a2, SLC2a1, SLC3a2, SLC5a4, SLC7a11, and SLC7a4 were up regulated, while 4 transporters including SLC22a2, SLC22a9, SLC28a1, and SLC7a9 were down-regulated in hypoxia. Of the three aquaporin (Aqp) water channels, Aqp-9 was down-regulated, and Aqp-1 was up-regulated during hypoxia. Gene expression analysis showed down regulation of OCT-1, OCT-2, and ATB(0+) and up regulation of MCT-3 in hypoxic rat choroid-retina, without any effect on the expression of PEPT-1 and PEPT-2. Functional activity assays of PEPT, OCT, ATB(0+), and MCT transporters in calf ocular tissues showed that PEPT, OCT, and ATB(0+) functional activity was down-regulated, whereas MCT functional activity was up-regulated in hypoxic cornea and SCRPE. Gene expression analysis of these transporters in rat tissues was consistent with the functional transport assays except for PEPT transporters. Chronic hypoxia results in significant alterations in the mRNA expression and functional activity of solute transporters in ocular tissues.


Assuntos
Hipóxia/genética , Hipóxia/fisiopatologia , Proteínas de Membrana Transportadoras/metabolismo , Animais , Transporte Biológico/fisiologia , Barreira Hematorretiniana/metabolismo , Bovinos , Proteínas de Membrana Transportadoras/genética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Br J Clin Pharmacol ; 75(1): 217-26, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22625877

RESUMO

AIM: The objective of this study was to determine the extent to which the CYP2C8*3 allele influences pharmacokinetic variability in the drug-drug interaction between gemfibrozil (CYP2C8 inhibitor) and pioglitazone (CYP2C8 substrate). METHODS: In this randomized, two phase crossover study, 30 healthy Caucasian subjects were enrolled based on CYP2C8*3 genotype (n = 15, CYP2C8*1/*1; n = 15, CYP2C8*3 carriers). Subjects received a single 15 mg dose of pioglitazone or gemfibrozil 600 mg every 12 h for 4 days with a single 15 mg dose of pioglitazone administered on the morning of day 3. A 48 h pharmacokinetic study followed each pioglitazone dose and the study phases were separated by a 14 day washout period. RESULTS: Gemfibrozil significantly increased mean pioglitazone AUC(0,∞) by 4.3-fold (P < 0.001) and there was interindividual variability in the magnitude of this interaction (range, 1.8- to 12.1-fold). When pioglitazone was administered alone, the mean AUC(0,∞) was 29.7% lower (P = 0.01) in CYP2C8*3 carriers compared with CYP2C8*1 homozygotes. The relative change in pioglitazone plasma exposure following gemfibrozil administration was significantly influenced by CYP2C8 genotype. Specifically, CYP2C8*3 carriers had a 5.2-fold mean increase in pioglitazone AUC(0,∞) compared with a 3.3-fold mean increase in CYP2C8*1 homozygotes (P = 0.02). CONCLUSION: CYP2C8*3 is associated with decreased pioglitazone plasma exposure in vivo and significantly influences the pharmacokinetic magnitude of the gemfibrozil-pioglitazone drug-drug interaction. Additional studies are needed to evaluate the impact of CYP2C8 genetics on the pharmacokinetics of other CYP2C8-mediated drug-drug interactions.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Genfibrozila/farmacologia , Hipolipemiantes/farmacologia , Polimorfismo Genético , Tiazolidinedionas/farmacocinética , Adulto , Área Sob a Curva , Estudos Cross-Over , Citocromo P-450 CYP2C8 , Interações Medicamentosas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pioglitazona
18.
MedComm Biomater Appl ; 2(1)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38562247

RESUMO

Due to high structural flexibility, multidrug carrying capability, and tunable size, dendrimers have been used as suitable carriers for ophthalmic drug delivery. Drug molecules can be either encapsulated or chemically coupled to dendrimers. The nanoscopic size, spheroidal shape, and cationic surface of polyamidoamine (PAMAM) dendrimers promote their interaction with the cornea and result in prolonged precorneal retention. Dendrimers could be further cross-linked to produce three-dimensional hydrogel networks or dendrimer hydrogels (DH). The properties of the DH can be readily adjusted to maintain both fluidity and adhesiveness, making them suitable for developing topical ocular drug formulations. Micro-/nano-sized DHs, that is, dendrimer micro-/nano-gels, have unique properties such as ease of administration, large specific surface area for adhesion, and drug targeting functionalities, making them attractive for ophthalmic drug delivery. This perspective reports advances in PAMAM dendrimer based drug delivery systems including drug conjugates and micro- and nano-gels to enhance and sustain the delivery of multiple anti-glaucoma drugs, Dendrimer and dendrimer gel-derived drug delivery systems hold great potential as multifunctional topical drug delivery systems for the eye.

19.
Pharmaceutics ; 15(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37376094

RESUMO

The purpose of this study was to determine corneal permeability and uptake in rabbit, porcine, and bovine corneas for twenty-five drugs using an N-in-1 (cassette) approach and relate these parameters to drug physicochemical properties and tissue thickness through quantitative structure permeability relationships (QSPRs). A twenty-five-drug cassette containing ß-blockers, NSAIDs, and corticosteroids in solution at a micro-dose was exposed to the epithelial side of rabbit, porcine, or bovine corneas mounted in a diffusion chamber, and the corneal drug permeability and tissue uptake were monitored using an LC-MS/MS method. Data obtained were used to construct and evaluate over 46,000 quantitative structure-permeability (QSPR) models using multiple linear regression, and the best-fit models were cross-validated by Y-randomization. Drug permeability was generally higher in rabbit cornea and comparable between bovine and porcine corneas. Permeability differences between species could be explained in part by differences in corneal thickness. Corneal uptake between species correlated with a slope close to 1, indicating generally similar drug uptake per unit weight of tissue. A high correlation was observed between bovine, porcine, and rabbit corneas for permeability and between bovine and porcine corneas for uptake (R2 ≥ 0.94). MLR models indicated that drug characteristics such as lipophilicity (LogD), heteroatom ratio (HR), nitrogen ratio (NR), hydrogen bond acceptors (HBA), rotatable bonds (RB), index of refraction (IR), and tissue thickness (TT) are of great influence on drug permeability and uptake. When data for all species along with thickness as a parameter was used in MLR, the best fit equation for permeability was Log (% transport/cm2·s) = 0.441 LogD - 8.29 IR + 8.357 NR - 0.279 HBA - 3.833 TT + 10.432 (R2 = 0.826), and the best-fit equation for uptake was Log (%/g) = 0.387 LogD + 4.442 HR + 0.105 RB - 0.303 HBA - 2.235 TT + 1.422 (R2 = 0.750). Thus, it is feasible to explain corneal drug delivery in three species using a single equation.

20.
Drug Metab Dispos ; 40(7): 1380-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22498894

RESUMO

The aim of this study was to investigate the contribution of reduced apparent clearance to the enhanced exposure reported for biodegradable nanoparticles after extravascular and intravascular routes of administration. Plasma concentration profiles for drug and nanoparticle formulations after administration by intravenous, intraduodenal, and oral routes were extracted from the literature. Data were fit to pharmacokinetic models using BOOMER. The compartmental pharmacokinetic analysis of literature data for six drugs (camptothecin, 9-nitrocamptothecin, epirubicin, vinpocetine, clozapine, and cyclosporine) showed that the encapsulation of drug molecules in nanoparticles significantly reduced the apparent clearance and prolonged the apparent circulation half-life compared with those for the plain drug. Positively charged nanoparticles assessed in this study had lower apparent clearance, lower elimination rate constant values, and longer apparent circulation half-life than neutral and negatively charged nanoparticles. After oral administration, a reduction in apparent clearance contributed substantially to elevations in plasma drug exposure with nanoparticles. For the drugs and delivery systems examined, the nano-advantage in drug delivery enhancement can be explained, in part, by reduced clearance.


Assuntos
Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Administração Oral , Animais , Química Farmacêutica , Cães , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Injeções Intravenosas , Masculino , Preparações Farmacêuticas/sangue , Farmacocinética , Ratos , Ratos Sprague-Dawley , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA