Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Exp Physiol ; 106(5): 1196-1207, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33728692

RESUMO

NEW FINDINGS: What is the central question of this study? Detailed guidelines for volume replacement to counteract hypothermia-induced intravascular fluid loss are lacking. Evidence suggests colloids might have beneficial effects compared to crystalloids. Are central haemodynamic function and level of hypothermia-induced calcium overload, as a marker of cardiac injury, restored by fluid substitution during rewarming, and are colloids favourable to crystalloids? What is the main finding and its importance? Infusion with crystalloid or dextran during rewarming abolished post-hypothermic cardiac dysfunction, and partially mitigated myocardial calcium overload. The effects of volume replacement to support haemodynamic function are comparable to those using potent cardio-active drugs. These findings underline the importance of applying intravascular volume replacement to maintain euvolaemia during rewarming. ABSTRACT: Previous research exploring pathophysiological mechanisms underlying circulatory collapse after rewarming victims of severe accidental hypothermia has documented post-hypothermic cardiac dysfunction and hypothermia-induced elevation of intracellular Ca2+ concentration ([Ca2+ ]i ) in myocardial cells. The aim of the present study was to examine if maintaining euvolaemia during rewarming mitigates cardiac dysfunction and/or normalizes elevated myocardial [Ca2+ ]i . A total of 21 male Wistar rats (300 g) were surface cooled to 15°C, then maintained at 15°C for 4 h, and subsequently rewarmed to 37°C. The rats were randomly assigned to one of three groups: (1) non-intervention control (n = 7), (2) dextran treated (i.v. 12 ml/kg dextran 70; n = 7), or (3) crystalloid treated (24 ml/kg 0.9% i.v. saline; n = 7). Infusions occurred during the first 30 min of rewarming. Arterial blood pressure, stroke volume (SV), cardiac output (CO), contractility (dP/dtmax ) and blood gas changes were measured. Post-hypothermic changes in [Ca2+ ]i were measured using the method of radiolabelled Ca2+ (45 Ca2+ ). Untreated controls displayed post-hypothermic cardiac dysfunction with significantly reduced CO, SV and dP/dtmax . In contrast, rats receiving crystalloid or dextran treatment showed a return to pre-hypothermic control levels of CO and SV after rewarming, with the dextran group displaying significantly better amelioration of post-hypothermic cardiac dysfunction than the crystalloid group. Compared to the post-hypothermic increase in myocardial [Ca2+ ]i in non-treated controls, [Ca2+ ]i values with crystalloid and dextran did not increase to the same extent after rewarming. Volume replacement with crystalloid or dextran during rewarming abolishes post-hypothermic cardiac dysfunction, and partially mitigates the hypothermia-induced elevation of [Ca2+ ]i .


Assuntos
Hipotermia Induzida , Hipotermia , Animais , Masculino , Miócitos Cardíacos , Ratos , Ratos Wistar , Reaquecimento/métodos
2.
Exp Physiol ; 104(1): 50-60, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30375081

RESUMO

NEW FINDINGS: What is the central question of this study? Absence of hypothermia-induced cardiac arrest is a strong predictor for a favourable outcome after rewarming. Nevertheless, detailed knowledge of preferences in organ blood flow during rewarming with spontaneous circulation is largely unknown. What is the main finding and its importance? In a porcine model of accidental hypothermia, we find, despite a significantly reduced cardiac output during rewarming, normal blood flow and O2 supply in vital organs owing to patency of adequate physiological compensatory responses. In critical care medicine, active rewarming must aim at supporting the spontaneous circulation and maintaining spontaneous autonomous vascular control. ABSTRACT: The absence of hypothermia-induced cardiac arrest is one of the strongest predictors for a favourable outcome after rewarming from accidental hypothermia. We studied temperature-dependent changes in organ blood flow and O2 delivery ( D O 2 ) in a porcine model with spontaneous circulation during 3 h of hypothermia at 27°C followed by rewarming. Anaesthetized pigs (n = 16, weighing 20-29 kg) were randomly assigned to one of two groups: (i) hypothermia/rewarming (n = 10), immersion cooled to 27°C and maintained for 3 h before being rewarmed by pleural lavage; and (ii) time-matched normothermic (38°C) control animals (n = 6), immersed for 6.5 h, the last 2 h with pleural lavage. Regional blood flow was measured using a neutron-labelled microsphere technique. Simultaneous measurements of D O 2 and O2 consumption ( V ̇ O 2 ) were made. During hypothermia, there was a reduction in organ blood flow, V ̇ O 2 and D O 2 . After rewarming, there was a 40% reduction in stroke volume and cardiac output, causing a global reduction in D O 2 ; nevertheless, blood flow to the brain, heart, stomach and small intestine returned to prehypothermic values. Blood flow in the liver and kidneys was significantly reduced. Cerebral D O 2 and V ̇ O 2 returned to control values. After hypothermia and rewarming there is a significant lowering of D O 2 owing to heart failure. However, compensatory mechanisms preserve O2 transport, blood flow and V ̇ O 2 in most organs. Nevertheless, these results indicate that hypothermia-induced heart failure requires therapeutic intervention.


Assuntos
Hemodinâmica/fisiologia , Hipotermia/metabolismo , Oxigênio/metabolismo , Reaquecimento , Animais , Temperatura Corporal/fisiologia , Hipotermia Induzida/métodos , Modelos Animais , Suínos
3.
Front Physiol ; 13: 901908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574436

RESUMO

Introduction: Due to functional alterations of blood platelets and coagulation enzymes at low temperatures, excessive bleeding is a well-recognized complication in victims of accidental hypothermia and may present a great clinical challenge. Still, it remains largely unknown if hemostatic function normalizes upon rewarming. The aim of this study was to investigate effects of hypothermia and rewarming on blood coagulation in an intact porcine model. Methods: The animals were randomized to cooling and rewarming (n = 10), or to serve as normothermic, time-matched controls (n = 3). Animals in the hypothermic group were immersion cooled in ice water to 25°C, maintained at 25°C for 1 h, and rewarmed to 38°C (normal temperature in pigs) using warm water. Clotting time was assessed indirectly at different temperatures during cooling and rewarming using a whole blood coagulometer, which measures clotting time at 38°C. Results: Cooling to 25°C led to a significant increase in hemoglobin, hematocrit and red blood cell count, which persisted throughout rewarming. Cooling also caused a transiently decreased white blood cell count that returned to baseline levels upon rewarming. After rewarming from hypothermia, clotting time was significantly shortened compared to pre-hypothermic baseline values. In addition, platelet count was significantly increased. Discussion/Conclusion: We found that clotting time was significantly reduced after rewarming from hypothermia. This may indicate that rewarming from severe hypothermia induces a hypercoagulable state, in which thrombus formation is more likely to occur.

4.
Front Physiol ; 12: 763975, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803743

RESUMO

Background: Diving in cold water is thought to increase the risk of decompression sickness (DCS), especially if the diver is cold during decompression. In this study, we investigated hemodynamic function and DCS risk in an animal model, where cold decompression was followed by rewarming at the surface. Methods: Nine female Sprague Dawley rats had pressure-volume catheters inserted into their left heart ventricle and femoral artery before they were exposed to dry air dives in which their core temperature was normothermic during the bottom phase, cold (35°C) during decompression, and normothermic after the dive. Data from an earlier study were used as controls. The rats were compressed in air to 600kPa, maintained at pressure for 45min, and decompressed at 50kPa/min. Hemodynamic data were recorded before, during, and 60min after decompression. Venous gas bubbles were recorded in the right heart ventricle and pulmonary artery for 60min after the dive. Results and Conclusion: During decompression, cardiac output (CO), and stroke volume (SV) decreased equally in cold rats and controls. CO and SV were temporarily re-established at the surface, before falling again in the cold rats. There was no difference in post-dive venous bubble grades. However, as the post-dive fall in CO and SV could be a sign of gas emboli obstructing the pulmonary circulation, we cannot conclude whether the DCS risk was increased. More sensitive bubble detection methods are needed to elucidate this point.

5.
Front Physiol ; 12: 741241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658927

RESUMO

Introduction: Previously, we showed that the cardiopulmonary resuscitation (CPR) for hypothermic cardiac arrest (HCA) maintained cardiac output (CO) and mean arterial pressure (MAP) to the same reduced level during normothermia (38°C) vs. hypothermia (27°C). In addition, at 27°C, the CPR for 3-h provided global O2 delivery (DO2) to support aerobic metabolism. The present study investigated if rewarming with closed thoracic lavage induces a perfusing rhythm after 3-h continuous CPR at 27°C. Materials and Methods: Eight male pigs were anesthetized, and immersion-cooled. At 27°C, HCA was electrically induced, CPR was started and continued for a 3-h period. Thereafter, the animals were rewarmed by combining closed thoracic lavage and continued CPR. Organ blood flow was measured using microspheres. Results: After cooling with spontaneous circulation to 27°C, MAP and CO were initially reduced by 37 and 58% from baseline, respectively. By 15 min after the onset of CPR, MAP, and CO were further reduced by 58 and 77% from baseline, respectively, which remained unchanged throughout the rest of the 3-h period of CPR. During CPR at 27°C, DO2 and O2 extraction rate (VO2) fell to critically low levels, but the simultaneous small increase in lactate and a modest reduction in pH, indicated the presence of maintained aerobic metabolism. During rewarming with closed thoracic lavage, all animals displayed ventricular fibrillation, but only one animal could be electro-converted to restore a short-lived perfusing rhythm. Rewarming ended in circulatory collapse in all the animals at 38°C. Conclusion: The CPR for 3-h at 27°C managed to sustain lower levels of CO and MAP sufficient to support global DO2. Rewarming accidental hypothermia patients following prolonged CPR for HCA with closed thoracic lavage is not an alternative to rewarming by extra-corporeal life support as these patients are often in need of massive cardio-pulmonary support during as well as after rewarming.

6.
Sci Rep ; 11(1): 18918, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556695

RESUMO

We recently documented that cardiopulmonary resuscitation (CPR) generates the same level of cardiac output (CO) and mean arterial pressure (MAP) during both normothermia (38 °C) and hypothermia (27 °C). Furthermore, continuous CPR at 27 °C provides O2 delivery (DO2) to support aerobic metabolism throughout a 3-h period. The aim of the present study was to investigate the effects of extracorporeal membrane oxygenation (ECMO) rewarming to restore DO2 and organ blood flow after prolonged hypothermic cardiac arrest. Eight male pigs were anesthetized and immersion cooled to 27 °C. After induction of hypothermic cardiac arrest, CPR was started and continued for a 3-h period. Thereafter, the animals were rewarmed with ECMO. Organ blood flow was measured using microspheres. After cooling with spontaneous circulation to 27 °C, MAP and CO were initially reduced to 66 and 44% of baseline, respectively. By 15 min after the onset of CPR, there was a further reduction in MAP and CO to 42 and 25% of baseline, respectively, which remained unchanged throughout the rest of 3-h CPR. During CPR, DO2 and O2 uptake (V̇O2) fell to critical low levels, but the simultaneous small increase in lactate and a modest reduction in pH, indicated the presence of maintained aerobic metabolism. Rewarming with ECMO restored MAP, CO, DO2, and blood flow to the heart and to parts of the brain, whereas flow to kidneys, stomach, liver and spleen remained significantly reduced. CPR for 3-h at 27 °C with sustained lower levels of CO and MAP maintained aerobic metabolism sufficient to support DO2. Rewarming with ECMO restores blood flow to the heart and brain, and creates a "shockable" cardiac rhythm. Thus, like continuous CPR, ECMO rewarming plays a crucial role in "the chain of survival" when resuscitating victims of hypothermic cardiac arrest.


Assuntos
Reanimação Cardiopulmonar/métodos , Oxigenação por Membrana Extracorpórea , Parada Cardíaca/terapia , Hipotermia/terapia , Reaquecimento/métodos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Circulação Cerebrovascular , Circulação Coronária , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Parada Cardíaca/etiologia , Parada Cardíaca/fisiopatologia , Humanos , Hipotermia/complicações , Hipotermia/fisiopatologia , Masculino , Oxigênio/metabolismo , Circulação Renal , Circulação Esplâncnica , Sus scrofa
7.
Front Physiol ; 12: 695779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393818

RESUMO

INTRODUCTION: Cardiovascular dysfunction is a potentially lethal complication of hypothermia. Due to a knowledge gap, pharmacological interventions are not recommended at core temperatures below 30°C. Yet, further cooling is induced in surgical procedures and survival of accidental hypothermia is reported after rewarming from below 15°C, advocating a need for evidence-based treatment guidelines. In vivo studies have proposed vasodilation and afterload reduction through arteriole smooth muscle cGMP-elevation as a favorable strategy to prevent cardiovascular dysfunction in hypothermia. Further development of treatment guidelines demand information about temperature-dependent changes in pharmacological effects of clinically relevant vasodilators. MATERIALS AND METHODS: Human phosphodiesterase-enzymes and inverted erythrocytes were utilized to evaluate how vasodilators sildenafil and vardenafil affected cellular efflux and enzymatic breakdown of cAMP and cGMP, at 37°C, 34°C, 32°C, 28°C, 24°C, and 20°C. The ability of both drugs to reach their cytosolic site of action was assessed at the same temperatures. IC50- and K i -values were calculated from dose-response curves at all temperatures, to evaluate temperature-dependent effects of both drugs. RESULTS: Both drugs were able to reach the intracellular space at all hypothermic temperatures, with no reduction compared to normothermia. Sildenafil IC50 and K i -values increased during hypothermia for enzymatic breakdown of both cAMP (IC50: 122 ± 18.9 µM at 37°C vs. 269 ± 14.7 µM at 20°C, p < 0.05) and cGMP (IC50: 0.009 ± 0.000 µM at 37°C vs. 0.024 ± 0.004 µM at 32°C, p < 0.05), while no significant changes were detected for vardenafil. Neither of the drugs showed significant hypothermia-induced changes in IC50 and K i- values for inhibition of cellular cAMP and cGMP efflux. CONCLUSION: Sildenafil and particularly vardenafil were ableto inhibit elimination of cGMP down to 20°C. As the cellular effects of these drugs can cause afterload reduction, they show potential in treating cardiovascular dysfunction during hypothermia. As in normothermia, both drugs showed higher selectivity for inhibition of cGMP-elimination than cAMP-elimination at low core temperatures, indicating that risk for cardiotoxic side effects is not increased by hypothermia.

8.
Front Physiol ; 11: 213, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372965

RESUMO

AIMS: Complete restitution of neurologic function after 6 h of pre-hospital resuscitation and in-hospital rewarming has been reported in accidental hypothermia patients with cardiac arrest (CA). However, the level of restitution of circulatory function during long-lasting hypothermic cardiopulmonary resuscitation (CPR) remains largely unknown. We compared the effects of CPR in replacing spontaneous circulation during 3 h at 27°C vs. 45 min at normothermia by determining hemodynamics, global oxygen transport (DO2), oxygen uptake (VO2), and organ blood flow. METHODS: Anesthetized pigs (n = 7) were immersion cooled to CA at 27°C. Predetermined variables were compared: (1) Before cooling, during cooling to 27°C with spontaneous circulation, after CA and subsequent continuous CPR (n = 7), vs. (2) before CA and during 45 min CPR in normothermic pigs (n = 4). RESULTS: When compared to corresponding values during spontaneous circulation at 38°C: (1) After 15 min of CPR at 27°C, cardiac output (CO) was reduced by 74%, mean arterial pressure (MAP) by 63%, DO2 by 47%, but organ blood flow was unaltered. Continuous CPR for 3 h maintained these variables largely unaltered except for significant reduction in blood flow to the heart and brain after 3 h, to the kidneys after 1 h, to the liver after 2 h, and to the stomach and small intestine after 3 h. (2) After normothermic CPR for 15 min, CO was reduced by 71%, MAP by 54%, and DO2 by 63%. After 45 min, hemodynamic function had deteriorated significantly, organ blood flow was undetectable, serum lactate increased by a factor of 12, and mixed venous O2 content was reduced to 18%. CONCLUSION: The level to which CPR can replace CO and MAP during spontaneous circulation at normothermia was not affected by reduction in core temperature in our setting. Compared to spontaneous circulation at normothermia, 3 h of continuous resuscitation at 27°C provided limited but sufficient O2 delivery to maintain aerobic metabolism. This fundamental new knowledge is important in that it encourages early and continuous CPR in accidental hypothermia victims during evacuation and transport.

9.
Front Physiol ; 10: 1597, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998144

RESUMO

Cardiovascular risk is elevated in divers, but detailed information of cardiac function during diving is missing. The aim of this study was to apply an intact rat model with continuous monitoring of cardiac left ventricular (LV) function in a simulated diving experiment. Thirteen rats were inserted with a LV pressure-volume catheter and a pressure transducer in the femoral artery to measure hemodynamic variables, and randomly assigned to diving (n = 9) and control (n = 4) groups. The diving group was compressed to 600 kPa in air, maintained at pressure for 45 min (bottom phase), and decompressed to surface at 50 kPa/min. Data was collected before, during, and up to 60 min after exposure in the diving group, and at similar times in non-diving controls. During the bottom phase, stroke volume (SV) (-29%) and cardiac output (-30%) decreased, whereas LV end-systolic volume (+13%), mean arterial pressure (MAP) (+29%), and total peripheral resistance (TPR) (+72%) increased. There were no changes in LV contractility, stroke work, or diastolic function. All hemodynamic variables returned to baseline values within 60 min after diving. In conclusion, our simulated dive experiment to 600 kPa increased MAP and TPR to levels which caused a substantial reduction in SV and LV volume output. The increase in cardiac afterload demonstrated to take place during a dive is well tolerated by the healthy heart in our model, whereas in a failing heart this abrupt change in afterload may lead to acute cardiac decompensation.

10.
Cryobiology ; 56(1): 15-21, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17983615

RESUMO

Rewarming patients from accidental hypothermia are regularly complicated with cardiovascular instability ranging from minor depression of cardiac output to fatal circulatory collapse also termed "rewarming shock". Since altered Ca2+ handling may play a role in hypothermia-induced heart failure, we studied changes in Ca2+ homeostasis in in situ hearts following hypothermia and rewarming. A rat model designed for studies of the intact heart in a non-arrested state during hypothermia and rewarming was used. Rats were core cooled to 15 degrees C, maintained at 15 degrees C for 4h and thereafter rewarmed. As time-matched controls, one group of animals was kept at 37 degrees C for 5h. Total intracellular myocardial Ca2+ content ([Ca2+]i) was measured using 45Ca2+. Following rewarming we found a significant reduction of stroke volume and cardiac output compared to prehypothermic control values as well as to time-matched controls. Likewise, we found that hypothermia and rewarming resulted in a more than six-fold increase in [Ca2+]i to 3.01+/-0.43 micromol/g dry weight compared to 0.44+/-0.05 micromol/g dry weight in normothemia control. These findings indicate that hypothermia-induced alterations in the Ca2+-handling result in Ca2+ overload during hypothermia, which may contribute to myocardial failure during and after rewarming.


Assuntos
Cálcio/fisiologia , Coração/fisiologia , Hipotermia Induzida , Miocárdio/metabolismo , Reaquecimento , Animais , Débito Cardíaco , Insuficiência Cardíaca/etiologia , Hemodinâmica , Homeostase , Masculino , Ratos , Ratos Wistar
11.
Cryobiology ; 57(3): 246-50, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18834873

RESUMO

The purpose of this study was to determine cardiovascular beta-adrenergic responses during hypothermia. In the present study, we used isoproterenol (Iso), a nonselective, potent beta-adrenoceptor agonist, well known for its positive chronotropic and inotropic pharmacologic actions at normothermia. Rats were instrumented to measure mean arterial pressure (MAP) and left ventricular (LV) pressure-volume changes using a Millar pressure-volume conductance catheter. Core temperature was manipulated from 37 (normothermia) to 24 degrees C (hypothermia) and back to 37 degrees C (rewarming) using both internal and external heat exchangers. During cooling at each temperature (33, 30, 27, and 24 degrees C), central hemodynamic variables and MAP were measured while intravenously infusing Iso (doses of 1.7, 5, 10, and 20 ng/min). Seven animals underwent all phases of the protocol. At normothermia Iso infusion resulted in a significant, dose-dependent increase in heart rate (HR), stroke volume (SV), cardiac output (CO), LV dP/dt(max) (left ventricular maximum derivative of systolic pressure over time) but no change in MAP. During cooling Iso infusion caused no dose-dependent change in any of the hemodynamic variables. After rewarming, baseline HR and LV dP/dt(max) were increased, whereas SV was significantly reduced when compared with their pre-hypothermic baseline values. This study shows that physiological cardiovascular responses mediated by the beta-adrenoceptor are significantly diminished during core hypothermia.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Hipotermia Induzida , Isoproterenol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Animais , Ventrículos do Coração/efeitos dos fármacos , Masculino , Ratos
12.
Arterioscler Thromb Vasc Biol ; 26(10): 2401-6, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16902157

RESUMO

OBJECTIVE: Triggering of tissue factor (TF)-mediated blood coagulation leads to the development of disseminated intravascular coagulation during rewarming from hypothermia. We studied post-rewarming TF levels, activity, and surface redistribution, along with the regulation of TF gene transcription in mononuclear cells (MNCs) obtained from an in vivo rat model. METHODS AND RESULTS: Rewarming after a 5-hour episode of 15 degrees C hypothermia caused an increase in TF activity, protein levels, and externalization of TF antigen in rat MNCs. This was accompanied by a dramatic elevation of c-Jun and JNK phosphorylation, and the absence of EGR-1 and NF-kappaB activation. To search for a stimulus to counteract c-Jun-mediated induction of TF activity in MNCs from rewarmed rats, we applied heat shock pretreatment one day before the hypothermia/rewarming experiment. This restored post-rewarming TF activity, protein levels, and surface-to-total TF ratio in rat MNCs to normothermic levels. Furthermore, in heat shock-pretreated animals, rewarming failed to increase phosphorylated c-Jun and JNK levels. We attribute this to the profound overexpression of heat shock protein 70 and inhibition of JNK. CONCLUSIONS: MNCs respond to rewarming from hypothermia by an induction of active TF antigen. This effect is dependent on c-Jun activation and is abolished by heat shock pretreatment.


Assuntos
Temperatura Alta/uso terapêutico , Hipertermia Induzida , Hipotermia/metabolismo , Hipotermia/terapia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , Tromboplastina/antagonistas & inibidores , Tromboplastina/biossíntese , Animais , Ativação Enzimática , Temperatura Alta/efeitos adversos , Inflamação/etiologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Fosforilação , Ratos , Ratos Wistar , Tromboplastina/genética , Transcrição Gênica
13.
J Am Soc Echocardiogr ; 23(4): 439-47, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20138469

RESUMO

BACKGROUND: Speckle-tracking echocardiography (STE) can be used to quantify wall strain in 3 dimensions and thus has the potential to improve the identification of hypokinetic but viable myocardium on dobutamine stress echocardiography (DSE). However, if different myocardial layers respond heterogeneously, STE-DSE will have to be standardized according to strain dimension and the positioning of the region of interest. Therefore, the aim of this study was to create a high-resolution model for ejection time (ET) strain and tissue flow in 4 myocardial layers at rest, during hypoperfusion, and during dobutamine challenge to assess the ability of STE-DSE to detect deformation and functional improvement in various layers of the myocardium. METHODS: In 10 open chest pigs, the left anterior descending coronary artery was constricted to a constant stenosis, resulting in 35% initial flow reduction. Fluorescent microspheres were used to measure tissue flow. High-resolution echocardiography was performed epicardially to calculate ET strain in 4 myocardial layers in the radial, longitudinal, and circumferential directions using speckle-tracking software. Images were obtained at rest, during left anterior descending coronary artery constriction (hypoperfusion), and during a subsequent dobutamine stress period. RESULTS: Dobutamine stress at constant coronary stenosis increased flow in all layers. ET strain increased predominantly in the midmyocardial layers in the longitudinal and circumferential directions, whereas subendocardial strain did not improve in either direction. CONCLUSION: Dobutamine stress influences ET strain differently in the various axes and layers of the myocardium and only partially in correspondence to tissue flow. Longitudinal and circumferential functional reserve opens the potential for the specific detection of midsubendocardial viable tissue by high-resolution STE.


Assuntos
Ecocardiografia sob Estresse/métodos , Coração/fisiopatologia , Sobrevivência de Tecidos/fisiologia , Animais , Circulação Coronária/fisiologia , Estenose Coronária/fisiopatologia , Feminino , Masculino , Suínos
14.
Am J Physiol Heart Circ Physiol ; 291(1): H441-50, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16461371

RESUMO

It has been postulated that unsuccessful resuscitation of victims of accidental hypothermia is caused by insufficient tissue oxygenation. The aim of this study was to test whether inadequate O2 supply and/or malfunctioning O2 extraction occur during rewarming from deep/profound hypothermia of different duration. Three groups of rats (n = 7 each) were used: group 1 served as normothermic control for 5 h; groups 2 and 3 were core cooled to 15 degrees C, kept at 15 degrees C for 1 and 5 h, respectively, and then rewarmed. In both hypothermic groups, cardiac output (CO) decreased spontaneously by > 50% in response to cooling. O2 consumption fell to less than one-third during cooling but recovered completely in both groups during rewarming. During hypothermia, circulating blood volume in both groups was reduced to approximately one-third of baseline, indicating that some vascular beds were critically perfused during hypothermia. CO recovered completely in animals rewarmed after 1 h (group 2) but recovered to only 60% in those rewarmed after 5 h (group 3), whereas blood volume increased to approximately three-fourths of baseline in both groups. Metabolic acidosis was observed only after 5 h of hypothermia (15 degrees C). A significant increase in myocardial tissue heat shock protein 70 after rewarming in group 3, but not in group 2, indicates an association with the duration of hypothermia. Thus mechanisms facilitating O2 extraction function well during deep/profound hypothermia, and, despite low CO, O2 supply was not a limiting factor for survival in the present experiments.


Assuntos
Hipotermia/metabolismo , Hipotermia/terapia , Oxigênio/metabolismo , Reaquecimento/métodos , Taxa de Sobrevida , Animais , Masculino , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA