Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Infect Dis ; 36(5): 353-359, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37593952

RESUMO

PURPOSE OF REVIEW: The human gut harbors a diverse community of microorganisms known as the gut microbiota. Extensive research in recent years has shed light on the profound influence of the gut microbiome on human health and disease. This review aims to explore the role of the gut microbiome in various clinical conditions and highlight the emerging therapeutic potential of targeting the gut microbiota for disease management. RECENT FINDINGS: Knowledge of the influence of gut microbiota on human physiology led to the development of various therapeutic possibilities such as fecal microbiota transplant (FMT), phage therapy, prebiotics, and probiotics. Recently, the U.S. FDA approved two FMT products for the treatment of recurrent Clostridioides difficile infection with ongoing research for the treatment of various disease conditions. SUMMARY: Advancement in the knowledge of the association between gut microbiota and various disease processes has paved the way for novel therapeutics.


Assuntos
Microbioma Gastrointestinal , Terapia por Fagos , Probióticos , Humanos , Gerenciamento Clínico , Transplante de Microbiota Fecal , Probióticos/uso terapêutico
2.
Molecules ; 26(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34641594

RESUMO

Glioblastoma (GB) is a deadly and aggressive cancer of the CNS. Even with extensive resection and chemoradiotherapy, patient survival is still only 15 months. To maintain growth and proliferation, cancer cells require a high oxidative state. Curcumin, a well-known anti-inflammatory antioxidant, is a potential candidate for treatment of GB. To facilitate efficient delivery of therapeutic doses of curcumin into cells, we encapsulated the drug in surface-modified polyamidoamine (PAMAM) dendrimers. We studied the in vitro effectiveness of a traditional PAMAM dendrimer (100% amine surface, G4 NH2), surface-modified dendrimer (10% amine and 90% hydroxyl-G4 90/10-Cys), and curcumin (Cur)-encapsulated dendrimer (G4 90/10-Cys-Cur) on three species of glioblastoma cell lines: mouse-GL261, rat-F98, and human-U87. Using an MTT assay for cell viability, we found that G4 90/10-Cys-Cur reduced viability of all three glioblastoma cell lines compared to non-cancerous control cells. Under similar conditions, unencapsulated curcumin was not effective, while the non-modified dendrimer (G4 NH2) caused significant death of both cancerous and normal cells. By harnessing and optimizing the components of PAMAM dendrimers, we are providing a promising new route for delivering cancer therapeutics. Our results with curcumin suggest that antioxidants are good candidates for treating glioblastoma.


Assuntos
Curcumina/farmacologia , Dendrímeros/farmacologia , Portadores de Fármacos/farmacologia , Glioblastoma/tratamento farmacológico , Poliaminas/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/química , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
3.
ACS Appl Mater Interfaces ; 16(32): 41907-41915, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39083440

RESUMO

Polyamidoamine (PAMAM) dendrimers are nanoparticles that have a wide scope in the field of biomedicine. Previous evidence shows that the generation 4 (G4) dendrimers with a 100% amine surface (G4-NH2) are highly toxic to cells in vitro and in vivo due to their positively charged amine groups. To reduce the toxicity, we modified the surface of the dendrimers to have more neutral functional groups, with 10% of the surface covered with -NH2 and 90% of the surface covered with hydroxyl groups (-OH; G4-90/10). Our previous in vitro data show that these modified dendrimers are taken up by cells, neurons, and different types of stem cells in vitro and neurons and glial cells in vivo. The toxicity assay shows that these modified dendrimers are less toxic compared with G4-NH2 dendrimers. Moreover, prolonged dendrimer exposure (G1-90/10 and G4-90/10), up to 3 weeks following unilateral intrastriatal injections into the striatum of mice, showed that dendrimers have the tendency to migrate within the brain via corpus callosum at different rates depending on their size. We also found that there is a difference in migration between the G1 and G4 dendrimers based on their size differences. The G4 dendrimers migrate in the anterior and posterior directions as well as more laterally from the site of injection in the striatum compared to the G1 dendrimers. Moreover, the G4 dendrimers have unique projections from the site of injection to the cortical areas.


Assuntos
Dendrímeros , Dendrímeros/química , Dendrímeros/toxicidade , Animais , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Propriedades de Superfície
4.
Cell Transplant ; 28(4): 460-463, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947515

RESUMO

During the 25-year history of the American Society for Neural Therapy and Repair (ASNTR) there have been several breakthroughs in the area of neurotherapeutics, which was the case during the 2014-2105 year when one of us (GLD) had the privilege of serving as its president. During that year, the use of a newly developed gene-editing tool, the CRISPR-Cas9 system, started to skyrocket. Although scientists unraveled the use of "clustered regularly interspaced short palindromic repeats" (CRISPR) and its associated genes from the Cas family as an evolved mechanism of some bacterial and archaeal genomes to protect themselves from being hijacked by invasive viral genes, its use as a therapeutic tool was not fully appreciated until further research revealed how this system operated and how it might be developed technologically to manipulate genes of any species. By 2015, this technology had exploded to the point that close to 2,000 papers that used this technology were published during that year alone.


Assuntos
Biomarcadores/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Doença de Huntington/genética , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA