Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(11): 1577-1587, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271146

RESUMO

Aberrant RNA splicing in keratinocytes drives inflammatory skin disorders. In the present study, we found that the RNA helicase DDX5 was downregulated in keratinocytes from the inflammatory skin lesions in patients with atopic dermatitis and psoriasis, and that mice with keratinocyte-specific deletion of Ddx5 (Ddx5∆KC) were more susceptible to cutaneous inflammation. Inhibition of DDX5 expression in keratinocytes was induced by the cytokine interleukin (IL)-17D through activation of the CD93-p38 MAPK-AKT-SMAD2/3 signaling pathway and led to pre-messenger RNA splicing events that favored the production of membrane-bound, intact IL-36 receptor (IL-36R) at the expense of soluble IL-36R (sIL-36R) and to the selective amplification of IL-36R-mediated inflammatory responses and cutaneous inflammation. Restoration of sIL-36R in Ddx5∆KC mice with experimental atopic dermatitis or psoriasis suppressed skin inflammation and alleviated the disease phenotypes. These findings indicate that IL-17D modulation of DDX5 expression controls inflammation in keratinocytes during inflammatory skin diseases.


Assuntos
Dermatite Atópica , Interleucina-27 , Psoríase , Camundongos , Animais , Interleucina-27/metabolismo , Dermatite Atópica/genética , Dermatite Atópica/patologia , Queratinócitos/metabolismo , Pele/patologia , Psoríase/genética , Psoríase/patologia , Inflamação/metabolismo
2.
Environ Toxicol ; 35(2): 159-166, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31696622

RESUMO

Tetrabromoethylcyclohexane (TBECH) has been linked to endocrine disruption, hepatotoxicity, and reproductive toxicity. However, its immunotoxicity remains largely unknown. In the present study, RAW 264.7 cells, mouse macrophage cell line, were exposed to TBECH. MTT assays showed that TBECH significantly enhanced lactate dehydrogenase (LDH) release in RAW 264.7 cells. The mRNA expression of some proapoptotic genes was upregulated by TBECH. Accordingly, TBECH elevated caspase-3 activity. In addition, TBECH upregualted the mRNA levels of some pro-inflammatory cytokines, whereas it downregulated LPS-stimulated mRNA expression of these cytokines. Moreover, TBECH downregulated the mRNA expression of selected antigen presenting-related genes. Furthermore, TBECH increased reactive oxygen species level, reduced glutathione content and the activities of superoxide dismutase and catalase, and upregulated the mRNA expression of selected oxidative stress-related genes. The obtained data demonstrated that TBECH exhibits immunotoxicity in macrophages, and will help to evaluate its health risks.


Assuntos
Cicloexanos/toxicidade , Citocinas/metabolismo , Retardadores de Chama/toxicidade , Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Catalase/metabolismo , Glutationa/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Estresse Oxidativo/genética , Células RAW 264.7 , Superóxido Dismutase/metabolismo
3.
Environ Toxicol ; 34(2): 141-149, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30536526

RESUMO

8:2 Fluorotelomer alcohol (8:2 FTOH) is widely used in houseware and industrial goods and is ubiquitous in the surrounding environment. 8:2 FTOH has been linked to hepatoxicity, nephrotoxicity, and reproductive toxicity, as well as endocrine-disrupting effects. However, as of yet, the research regarding immunotoxicity of 8:2 FTOH remains largely limited. In the present study, adult male C57BL/6 mice were administered with 10, 30, and 100 mg/kg/d 8:2 FTOH by gavage for 28 days to investigate its immunotoxicity in vivo. The results showed that exposure to 8:2 FTOH caused increases in liver weight and histological changes in the liver, including vacuolation, cell swelling, immune cell infiltration, karyopyknosis and nuclear swelling. No histological change in either the spleen or the thymus was observed after administration of 8:2 FTOH. In addition, exposure to 8:2 FTOH reduced the concentration of IL-1ß in serum, and mRNA levels of IL-1ß, IL-6, and TNF-α in both the thymus and spleen. CXCL-1 mRNA expression was downregulated in both the liver and thymus after 8:2 FTOH administration, while only IL-1ß mRNA expression was upregulated in the liver. Moreover, the exposure of primary cultured splenocytes to 8:2 FTOH inhibited the ConA-stimulated proliferation of splenocytes at concentrations of 30 and 100 µM, and the LPS-stimulated proliferation of splenocytes at 100 µM. Furthermore, 8:2 FTOH inhibited the level of secreted IFN-γ in ConA-stimulated splenocytes. The results obtained in the study demonstrated that 8:2 FTOH posed potential immunotoxicity and liver injury in mice. Our findings will provide novel data for the health risk assessment of 8:2 FTOH.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Fígado/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Concanavalina A/farmacologia , Citocinas/sangue , Citocinas/genética , Relação Dose-Resposta a Droga , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Baço/efeitos dos fármacos , Baço/imunologia
4.
Environ Toxicol ; 34(5): 666-673, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30794351

RESUMO

Fluorotelomer alcohols (FTOHs) are fluorinated intermediates used in manufacturing specialty polymer and surfactants, with 8:2 FTOH the homologue of largest production. FTOHs were found to pose acute toxicity, hepatotoxicity, nephrotoxicity, developmental toxicity and endocrine-disrupting risks, whereas research regarding immunotoxicity and its underlying mechanism, especially on specific immune cells is limited. Here, we investigated the immunotoxicity of 8:2 FTOH on immature immune cells in an in vitro system. We observed that exposure of HL-60 cells, a human promyelocytic leukemic cell line, to 8:2 FTOH reduced cell viability in a dose- and time-dependent manner. In addition, 8:2 FTOH exposure caused G1 cell cycle arrest in HL-60 cells, while it showed no effect on apoptosis. Exposure to 8:2 FTOH inhibited the mRNA expression of cell cycle-related genes, including CCNA1, CCNA2, CCND1, and CCNE2. Moreover, exposure to 8:2 FTOH inhibited the mRNA expression of granulocytic differentiation-related genes of CD11b, CSF3R, PU.1, and C/EPBε in HL-60 cells . Furthermore, 8:2 FTOH exhibited no effect on intracellular ROS level, while hydralazine hydrochloride (Hyd), one reactive carbonyl species (RCS) scavenger, partially blocked 8:2 FTOH-caused cytotoxicity in HL-60 cells. Overall, the results obtained in the study show that 8:2 FTOH poses immunotoxicity in immature immune cells and RCS may partially underline its mechanism.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fluorocarbonos/toxicidade , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Granulócitos/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/imunologia , Genes cdc/efeitos dos fármacos , Genes cdc/imunologia , Granulócitos/citologia , Granulócitos/imunologia , Células HL-60 , Humanos , Fatores de Tempo
5.
Acta Biochim Biophys Sin (Shanghai) ; 50(8): 740-747, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945211

RESUMO

The most widely used type II pyrethroid is ß-cypermethrin (ß-CYP), and 3-phenoxybenzoic acid (3-PBA) is one of its primary metabolites. Although CYP has been shown to pose toxic effects in some immune cells, as of now the immunotoxicity of CYP on immune progenitor cells has not been well studied. In this study, we evaluated the immunotoxicity of ß-CYP and 3-PBA on the human promyelocytic leukemia cell line, HL-60. Both ß-CYP and 3-PBA reduced cell viability. In addition, both ß-CYP and 3-PBA stimulated the intrinsic apoptotic pathway in a dose- and time-dependent manner, while only ß-CYP induced cell cycle arrest in G1 stage. Moreover, exposure to ß-CYP and 3-PBA at 100 µM inhibited all-trans retinoic acid (ATRA)-induced mRNA expressions of the granulocytic differentiation-related genes, CD11b and CSF-3R. Furthermore, exposure to ß-CYP and 3-PBA resulted in a downregulation of the granulocytic differentiation promoting transcriptional factors, PU.1 and C/EBPε. Furthermore, we found that ß-CYP and 3-PBA exposure led to elevated levels of cellular reactive oxygen species (ROS), and that pretreatment with N-acetylcysteine (NAC) blocked the toxic effects caused by ß-CYP and 3-PBA. The results obtained in the present study provide evidence showing the immunotoxic effects of ß-CYP and 3-PBA on promyelocytic cells as well as its possible underlying mechanism.


Assuntos
Apoptose/efeitos dos fármacos , Benzoatos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Piretrinas/farmacologia , Acetilcisteína/farmacologia , Apoptose/genética , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Piretrinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Acta Biochim Biophys Sin (Shanghai) ; 49(12): 1083-1091, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040392

RESUMO

ß-Cypermethrin (ß-CYP), one of most important pyrethroids, is widely used to control insects, and has been detected in organisms, including human. Pyrethroids have been shown to pose neurotoxicity, hepatotoxicity, endocrine disruption and reproductive risks in mammals. However, research in immunotoxicity of pyrethroids, especially their metabolites, is limited. A common metabolite of pyrethroids is 3-phenoxybenzoic acid (3-PBA) in mammals. Thus, in this study, we evaluated the immunotoxicity of ß-CYP and 3-PBA in mouse macrophages, RAW 264.7 cells. MTT assays showed that both ß-CYP and 3-PBA reduced cell viability in a concentration- and time-dependent manner. Flow cytometry with Annexin-V/PI staining demonstrated that both ß-CYP and 3-PBA induced RAW 264.7 cell apoptosis. Furthermore, our results also showed that N-acetylcysteine partially blocked ß-CYP- and 3-PBA-induced cytotoxicity and apoptosis. Intrinsic apoptotic pathway was stimulated by both ß-CYP and 3-PBA exposure. In addition, we found that ß-CYP and 3-PBA inhibited mRNA levels of pro-inflammatory cytokines with or without LPS stimulation. Phagocytosis assay showed that both ß-CYP and 3-PBA inhibited phagocytic ability of macrophages. Moreover, it was also found that both ß-CYP and 3-PBA increased reactive oxygen species (ROS) levels in RAW 264.7 cells. Accordingly, both ß-CYP and 3-PBA were found to regulate the mRNA levels of oxidative stress-related genes in RAW 264.7 cells. Taken together, the results obtained in this study demonstrated that ß-CYP and 3-PBA may have immunotoxic effect on macrophages and that elevated ROS may underlie the mechanism. The present study will help to understand the health risks caused by ß-CYP and other pyrethroids.


Assuntos
Benzoatos/toxicidade , Macrófagos/efeitos dos fármacos , Piretrinas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/fisiologia , Camundongos , Estresse Oxidativo , Fagocitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Environ Pollut ; 250: 416-425, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31026688

RESUMO

The immunotoxicity of synthetic pyrethroid (SPs) has garnered much attention, and our previous research demonstrated that ß-CYP causes immunotoxicity and oxidative stress in macrophages. Nevertheless, the underlying mechanism remains largely unknown. In this study, the murine macrophage RAW 264.7 cells and murine peritoneal macrophages (PMs) were exposed to ß-CYP. The results showed that ß-CYP elevated intracellular ROS levels in both RAW 264.7 cells and PMs. Exposure to ß-CYP also caused mitochondrial dysfunction with reduced mitochondrial membrane potential (MMP), intracellular ATP level and mitochondrial DNA (mtDNA) content in the two cell types. In addition, exposure of RAW 264.7 cells to ß-CYP for 12 h and 24 h enhanced autophagy, with elevated Beclin1, Rab7, Lamp1 and LC3-II expression levels, while 48 h of exposure attenuated autophagy. In contrast, exposure of PMs to ß-CYP for 12 h promoted autophagy, whereas exposure for 24 h and 48 h impaired autophagy. Cotreatment with an antioxidant, N-acetyl-L-cysteine (NAC), partially blocked the reduced MMP, intracellular ATP level and autophagy disturbance. Moreover, cotreatment with an autophagy agonist, rapamycin (RAPA), partially blocked mitochondrial dysfunction and oxidative stress in the two cell types, whereas cotreatment with an autophagy inhibitor, 3-methyladenine (3-MA), augmented the abovementioned toxic effects. Furthermore, mitochondrial ROS levels in both RAW 264.7 cells and PMs were elevated by exposure to ß-CYP, and molecular docking showed that ß-CYP docked with mouse respiratory chain complex I by binding to the ND2, ND4, and ND5 subunits of the protein complex. Taken together, the data obtained in the present study demonstrate that oxidative stress partially mediates mitochondrial dysfunction and autophagy disturbance upon exposure to ß-CYP in macrophages, and autophagy plays a protective role against the toxic effects.


Assuntos
Inseticidas/toxicidade , Mitocôndrias/efeitos dos fármacos , Piretrinas/toxicidade , Acetilcisteína/metabolismo , Animais , Antioxidantes/metabolismo , Autofagia/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/fisiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/fisiologia , Simulação de Acoplamento Molecular , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade
8.
Chemosphere ; 219: 1052-1060, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30558807

RESUMO

Fluorotelomer alcohols (FTOHs, F(CF2)nCH2CH2OH) are members of per- and polyfluoroalkyl substances (PFASs) and are increasingly used in surfactant and polymer industries. FTOHs pose hepatotoxicity, nephrotoxicity and endocrine-disrupting risks. Nevertheless, there is limited research on the immunotoxic effects of FTOHs. In this study, we examined the immunotoxicity of 8:2 FTOH (n = 8) on murine macrophage cell line RAW 264.7. The results showed that 8:2 FTOH exposure reduced cell viability in dose- and time-dependent manners, inhibited cell proliferation and caused cell cycle arrest. Exposure to 8:2 FTOH downregulated the mRNA expression of some cell cycle-related genes, including Cdk4, Ccnd1, Ccne1, and p53, but also upregulated the mRNA expression of other cell cycle related genes, including Ccna2, p21, and p27. Additionally, exposure to 8:2 FTOH under unstimulated and LPS-stimulated conditions downregulated the mRNA expression of pro-inflammatory genes, including Il1b, Il6, Cxcl1, and Tnfa, and secreted levels of IL-6 and TNF-α. Treatment with 8:2 FTOH upregulated the mRNA expression of antigen-presenting-related genes, including H2-K1, H2-Ka, Cd80, and Cd86. The abovementioned immunotoxic effects caused by 8:2 FTOH in RAW 264.7 cells were partially or completely blocked by co-treatment with hydralazine hydrochloride (Hyd), a reactive carbonyl species (RCS) scavenger. However, exposure to 8:2 FTOH did not exhibit any effects on intracellular reactive oxygen species (ROS) level with or without LPS stimulation. Taken together, these results suggest that 8:2 FTOH may have immunotoxic effects on macrophages and RCS may underlie the responsible mechanism. The present study aids in understanding the health risks caused by FTOHs.


Assuntos
Células Apresentadoras de Antígenos/química , Citocinas/química , Etanol/química , Macrófagos/metabolismo , Animais , Proliferação de Células , Camundongos
9.
Chemosphere ; 236: 124413, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31545206

RESUMO

TBBPA is one of the main brominated flame retardants and is ubiquitous in the environment. TBBPA can directly encounter immune cells via the bloodstream, posing potential immunotoxicity. To understand the immunomodulating effect of TBBPA on macrophages, the murine macrophages, RAW 264.7, were exposed to TBBPA at environmentally relevant concentrations (1-100 nM). The results showed that TBBPA at the selected concentrations did not alter cell viability of RAW 264.7 cells with or without LPS stimulation. TBBPA upregulated the expression of pro-inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, whereas it attenuated the LPS-stimulated expression of these pro-inflammatory cytokines, and the expression of anti-inflammatory cytokines, including IL-4, IL-10, and IL-13. In addition, TBBPA reduced the mRNA levels of antigen-presenting-related genes, including H2-K2, H2-Aa, Cd80, and Cd86. Moreover, TBBPA impaired the phagocytic activity of macrophages. Furthermore, exposure to TBBPA significantly elevated the protein levels of phosphorylated NF-κB p65 (p-p65), while it reduced LPS-stimulated p-p65 protein levels. DCFH-DA staining assays showed that TBBPA caused a slight but significant elevation in reactive oxygen species levels. The data obtained in the present study demonstrated that exposure to environmentally relevant concentrations of TBBPA posed immunotoxicity in macrophages and unveiled a potential health risk of TBBPA.


Assuntos
Poluentes Ambientais/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Bifenil Polibromatos/toxicidade , Animais , Antígeno B7-2/genética , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Retardadores de Chama/toxicidade , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Sci Total Environ ; 675: 110-121, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31026635

RESUMO

Short-chain chlorinated paraffins (SCCPs, C10-13) were listed as persistent organic pollutants (POPs) by the Stockholm Convention in 2017 and pose extensive exposure risks to humans. To our knowledge, there have been no studies reporting the immmunomodulatory effects of SCCPs until now. C9-CPs have also been shown to be present in the environment. In this study, adult male C57BL/6 mice were exposed to 1, 10, or 100 mg/kg/d C9-13-CPs by gavage for 28 d. The results showed that compared to those of the controls, exposure to C9-13-CPs led to increased spleen weight, delimited germinal centers, enhanced energy metabolism, and elevated glutathione content, but no variation in the malonaldehyde level in the spleen was observed. Exposure to C9-13-CPs also increased the populations of splenic lymphocytes, T lymphocytes, NK cells, and the ratio of the CD3+/CD19+ subsets and CD4+/CD8+ subsets compared to those of the controls. RNA-seq revealed 424 differentially expressed genes (DEGs) (fold change ≥ 1.5, FDR < 0.05) in the spleen between the control group and the 100 mg/kg/d C9-13-CPs-treated group. KEGG analysis demonstrated that folate biosynthesis, pathways in cancer and thyroid hormone signaling were the three most significantly enriched pathways, and despite not reaching statistical significance, some immune-related pathways were also enriched in the KEGG functional enrichment analysis, including the chemokine signaling pathway (FDR < 0.0584), the NF-κB signaling pathway (FDR < 0.0663), Th17 cell differentiation (FDR < 0.0839), and the Jak-STAT signaling pathway. Moreover, compared to those of the controls, exposure to C9-13-CPs enhanced the Concanavalin A (Con A)-stimulated cultured splenocyte proliferation, while the exposure showed no effect on the splenocyte proliferation that was stimulated by lipopolysaccharides (LPS). Taken together, these results demonstrated that subacute exposure to C9-13-CPs could have immunomodulatory effects in mice. The present study helps to provide an understanding of the comprehensive health risks posed by C9-13-CPs.


Assuntos
Poluentes Ambientais/toxicidade , Imunomodulação/efeitos dos fármacos , Parafina/toxicidade , Testes de Toxicidade , Animais , Hidrocarbonetos Clorados/toxicidade , Camundongos , Camundongos Endogâmicos C57BL
11.
Artigo em Inglês | MEDLINE | ID: mdl-30528700

RESUMO

Tetrabromoethylcyclohexane (TBECH), as one emerging brominated flame retardants, is ubiquitous in the environment, including water and aquatic organisms. TBECH was found to exhibit endocrine-disrupting effects in different models, whereas a survey of comprehensive toxic effects of TBECH on zebrafish is limited. In the present study, zebrafish (Danio rerio) were waterborne exposed continuously to TBECH from embryonic stage (3 h post-fertilization (hpf)) to the time when the respective parameters were evaluated. Exposure to TBECH reduced hatchability of zebrafish embryos at 72 and 96 hpf, diminished heart rate of zebrafish larvae at 48 hpf, and increased malformation in zebrafish larvae at 96 hpf. In addition, exposure to TBECH diminished free swimming distance both in the light and under a photoperiod of 10 min light/10 min dark cycles in zebrafish larvae at 6 days post-fertilization (dpf). Moreover, exposure to TBECH elevated activities of superoxide dismutase (SOD) and catalase (CAT), malondialdehyde (MDA) content, whereas it reduced glutathione (GSH) content, in zebrafish larvae at 6 dpf. Accordingly, RT-qPCR analysis demonstrated that TBECH exposure increased the mRNA levels of sod1, sod2, cat, and gpx1 in zebrafish larvae at 6 dpf. With respect to the immune aspect, the mRNA levels of pro-inflammatory genes, including il-1b, il-6, il-8, and tnfa, in larval zebrafish at 6 dpf were increased by exposure to TBECH, while pretreatment with TBECH inhibited 24 h of exposure to LPS-stimulated elevation in the mRNA levels of the abovementioned four pro-inflammatory genes in zebrafish larvae at 6 dpf. Furthermore, TBECH treatment increased caspase-3 enzyme activities and regulated apoptosis-related genes in larval zebrafish at 6 dpf. Taken together, the data obtained in this study demonstrated that TBECH caused developmental and locomotor behavioral toxicity, immunotoxicity, oxidative stress and proapoptotic effects in early life zebrafish. The present study will help to understand the comprehensive toxicity of TBECH in zebrafish.


Assuntos
Cicloexanos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Caspase 3 , Catalase , Cicloexanos/administração & dosagem , Retardadores de Chama/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa , Larva/efeitos dos fármacos , Malondialdeído , Superóxido Dismutase , Poluentes Químicos da Água/administração & dosagem , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA