Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plant Cell Environ ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038946

RESUMO

The improvement of performance and yield in both cultivar and species mixtures has been well established. Despite the clear benefits of crop mixtures to agriculture, identifying the critical mechanisms behind performance increases are largely lacking. We experimentally demonstrated that the benefits of rice cultivar mixtures were linked to relatedness-mediated intraspecific neighbour recognition and discrimination under both field and controlled conditions. We then tested biochemical mechanisms of responses in incubation experiments involving the addition of root exudates and a root-secreted signal, (-)-loliolide, followed by transcriptome analysis. We found that closely related cultivar mixtures increased grain yields by modifying root behaviour and accelerating flowering over distantly related mixtures. Importantly, these responses were accompanied by altered concentration of signalling (-)-loliolide that affected rice transcriptome profiling, directly regulating root growth and flowering gene expression. These findings suggest that beneficial crop combinations may be generated a-priori by manipulating neighbour genetic relatedness in rice cultivar mixtures and that root-secreted (-)-loliolide functions as a key mediator of genetic relatedness interactions. The ability of relatedness discrimination to regulate rice flowering and yield raises an intriguing possibility to increase crop production.

2.
New Phytol ; 238(5): 2099-2112, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444519

RESUMO

The production of defensive metabolites in plants can be induced by signaling chemicals released by neighboring plants. Induction is mainly known from volatile aboveground signals, with belowground signals and their underlying mechanisms largely unknown. We demonstrate that (-)-loliolide triggers defensive metabolite responses to competitors, herbivores, and pathogens in seven plant species. We further explore the transcriptional responses of defensive pathways to verify the signaling role of (-)-loliolide in wheat and rice models with well-known defensive metabolites and gene systems. In response to biotic and abiotic stressors, (-)-loliolide is produced and secreted by roots. This, in turn, induces the production of defensive compounds including phenolic acids, flavonoids, terpenoids, alkaloids, benzoxazinoids, and cyanogenic glycosides, regardless of plant species. (-)-Loliolide also triggers the expression of defense-related genes, accompanied by an increase in the concentration of jasmonic acid and hydrogen peroxide (H2 O2 ). Transcriptome profiling and inhibitor incubation indicate that (-)-loliolide-induced defense responses are regulated through pathways mediated by jasmonic acid, H2 O2 , and Ca 2+ . These findings argue that (-)-loliolide functions as a common belowground signal mediating chemical defense in plants. Such perception-dependent plant chemical defenses will yield critical insights into belowground signaling interactions.


Assuntos
Ciclopentanos , Plantas , Plantas/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo
3.
New Phytol ; 237(2): 563-575, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263726

RESUMO

Plants actively respond to their neighbors by altering root placement patterns. Neighbor-modulated root responses involve root detection and interactions mediated by root-secreted functional metabolites. However, chemically mediated root placement patterns and their underlying mechanisms remain elusive. We used an allelopathic wheat model system challenged with 60 target species to identify root placement responses in window rhizobox experiments. We then tested root responses and their biochemical mechanisms in incubation experiments involving the addition of activated carbon and functional metabolites with amyloplast staining and auxin localization in roots. Wheat and each target species demonstrated intrusive, avoidant or unresponsive root placement, resulting in a total of nine combined patterns. Root placement patterns were mediated by wheat allelochemicals and (-)-loliolide signaling of neighbor species. In particular, (-)-loliolide triggered wheat allelochemical production that altered root growth and placement, degraded starch grains in the root cap and induced uneven distribution of auxin in target species roots. Root placement patterns in wheat-neighbor interactions were perception dependent and species dependent. Signaling (-)-loliolide induced the production and release of wheat allelochemicals that modulated root placement patterns. Therefore, root placement patterns are generated by both signaling chemicals and allelochemicals in allelopathic plant-plant interactions.


Assuntos
Plantas , Triticum , Plantas/metabolismo , Triticum/metabolismo , Ácidos Indolacéticos/metabolismo , Alelopatia , Feromônios/metabolismo , Raízes de Plantas/metabolismo
4.
J Exp Bot ; 74(3): 964-975, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36342376

RESUMO

Plant defense, growth, and reproduction can be modulated by chemicals emitted from neighboring plants, mainly via volatile aboveground signals. However, belowground signals and their underlying control mechanisms are largely unknown. Here, we experimentally demonstrate that the root-secreted carotenoid (-)-loliolide mediates both defensive and reproductive responses in wild-type Arabidopsis, a carotenoid-deficient Arabidopsis mutant (szl1-1), and tobacco (Nicotiana benthamiana). Wild-type Arabidopsis plants flower later than szl1-1, and they secrete (-)-loliolide into the soil, whereas szl1-1 roots do not. When Arabidopsis and tobacco occur together, wild-type Arabidopsis induces nicotine production and defense-related gene expression in tobacco, whereas szl1-1 impairs this induction but accelerates tobacco flowering. Furthermore, nicotine production and the expression of the key genes involved in nicotine biosynthesis (QPT, PMT1), plant defense (CAT1, SOD1, PR-2a, PI-II, TPI), and flowering (AP1, LFY, SOC1, FT3, FLC) are differently regulated by incubation with wild-type Arabidopsis and szl1-1 root exudates or (-)-loliolide. In particular, (-)-loliolide up-regulated flowering suppressors (FT3 and FLC) and transiently down-regulated flowering stimulators (AP1 and SOC1), delaying tobacco flowering. Therefore, root-secreted (-)-loliolide modulates plant belowground defense and aboveground flowering, yielding critical insights into plant-plant signaling interactions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Nicotiana/metabolismo , Nicotina , Plantas/metabolismo , Carotenoides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética
5.
Plant Cell Environ ; 44(4): 1044-1058, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32931018

RESUMO

Plant-to-plant signalling is a key mediator of interactions among plant species. Plants can perceive and respond to chemical cues emitted from their neighbours, altering survival and performance, impacting plant coexistence and community assembly. An increasing number of studies indicate root exudates as key players in plant-to-plant signalling. Root exudates mediate root detection and behaviour, kin recognition, flowering and production, driving inter- and intra-specific facilitation in cropping systems and mixed-species plantations. Altered interactions may be attributed to the signalling components within root exudates. Root ethylene, strigolactones, jasmonic acid, (-)-loliolide and allantoin are signalling chemicals that convey information on local conditions in plant-plant interactions. These root-secreted signalling chemicals appear ubiquitous in plants and trigger a series of belowground responses inter- and intra-specifically, involving molecular events in biosynthesis, secretion and action. The secretion of root signals, mainly mediated by ATP-binding cassette transporters, is critical. Root-secreted signalling chemicals and their molecular mechanisms are rapidly revealing a multitude of fascinating plant-plant interactions. However, many root signals, particularly species-specific signals and their underlying mechanisms, remain to be uncovered due to methodological limitations and root-soil interactions. A thorough understanding of root-secreted chemical signals and their mechanisms will offer many ecological implications and potential applications for sustainable agriculture.


Assuntos
Raízes de Plantas/fisiologia , Plantas/metabolismo , Comunicação , Ecologia , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo
6.
Plant Cell Environ ; 44(12): 3479-3491, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33993534

RESUMO

Species interactions and mechanisms affect plant coexistence and community assembly. Despite increasing knowledge of kin recognition and allelopathy in regulating inter-specific and intra-specific interactions among plants, little is known about whether kin recognition mediates allelopathic interference. We used allelopathic rice cultivars with the ability for kin recognition grown in kin versus non-kin mixtures to determine their impacts on paddy weeds in field trials and a series of controlled experiments. We experimentally tested potential mechanisms of the interaction via altered root behaviour, allelochemical production and resource partitioning in the dominant weed competitor, as well as soil microbial communities. We consistently found that the establishment and growth of paddy weeds were more inhibited by kin mixtures compared to non-kin mixtures. The effect was driven by kin recognition that induced changes in root placement, altered weed carbon and nitrogen partitioning, but was associated with similar soil microbial communities. Importantly, genetic relatedness enhanced the production of intrusive roots towards weeds and reduced the production of rice allelochemicals. These findings suggest that relatedness allows allelopathic plants to discriminate their neighbouring collaborators (kin) or competitors and adjust their growth, competitiveness and chemical defense accordingly.


Assuntos
Alelopatia , Oryza/fisiologia , Feromônios/metabolismo , Plantas Daninhas/fisiologia
7.
J Exp Bot ; 71(4): 1540-1550, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31677347

RESUMO

Neighbor detection and allelochemical response are important mediators in plant-plant interactions. Although there is increasing knowledge about plant allelochemicals released in response to the presence of competitors and involved in neighbor-derived signaling, less is known about which signaling chemicals are responsible for the neighbor-induced allelochemical response. Here, we experimentally demonstrate that (-)-loliolide, a carotenoid metabolite, acts as a signaling chemical in barnyardgrass-rice allelopathic interactions. The production of the rice allelochemicals momilactone B and tricin was increased in the presence of five biotypes of barnyardgrass. (-)-Loliolide was found in all the biotypes of barnyardgrass and their root exudates and rhizosphere soils. There were significant positive relationships between rice allelochemicals and (-)-loliolide concentrations across the biotypes of barnyardgrass. Furthermore, (-)-loliolide elicited the production of momilactone B and tricin. Comparative transcriptomic analysis revealed regulatory activity of (-)-loliolide on the diterpenoid and flavonoid biosynthesis pathway. The expression of key genes involved in the biosynthesis of momilactone B (CPS4, KSL4, and MAS) and tricin (CYP75B3 and CYP75B4) was up-regulated by (-)-loliolide. These findings suggest that (-)-loliolide acts as a signaling chemical and participates in barnyardgrass-rice allelopathic interactions. Allelopathic rice plants can detect competing barnyardgrass through the presence of this signaling chemical and respond by increasing levels of their allelochemicals to achieve an advantage for their own growth.


Assuntos
Echinochloa , Oryza , Alelopatia , Benzofuranos , Echinochloa/genética , Lactonas , Oryza/genética , Raízes de Plantas
8.
Molecules ; 24(15)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357670

RESUMO

Plants abound with active ingredients. Among these natural constituents, allelochemicals and signaling chemicals that are released into the environments play important roles in regulating the interactions between plants and other organisms. Allelochemicals participate in the defense of plants against microbial attack, herbivore predation, and/or competition with other plants, most notably in allelopathy, which affects the establishment of competing plants. Allelochemicals could be leads for new pesticide discovery efforts. Signaling chemicals are involved in plant neighbor detection or pest identification, and they induce the production and release of plant defensive metabolites. Through the signaling chemicals, plants can either detect or identify competitors, herbivores, or pathogens, and respond by increasing defensive metabolites levels, providing an advantage for their own growth. The plant-organism interactions that are mediated by allelochemicals and signaling chemicals take place both aboveground and belowground. In the case of aboveground interactions, mediated air-borne chemicals are well established. Belowground interactions, particularly in the context of soil-borne chemicals driving signaling interactions, are largely unknown, due to the complexity of plant-soil interactions. The lack of effective and reliable methods of identification and clarification their mode of actions is one of the greatest challenges with soil-borne allelochemicals and signaling chemicals. Recent developments in methodological strategies aim at the quality, quantity, and spatiotemporal dynamics of soil-borne chemicals. This review outlines recent research regarding plant-derived allelochemicals and signaling chemicals, as well as their roles in agricultural pest management. The effort represents a mechanistically exhaustive view of plant-organism interactions that are mediated by allelochemicals and signaling chemicals and provides more realistic insights into potential implications and applications in sustainable agriculture.


Assuntos
Alelopatia , Feromônios/química , Fenômenos Fisiológicos Vegetais , Plantas/química , Produtos Agrícolas/química , Herbivoria , Controle de Pragas , Feromônios/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Melhoramento Vegetal
9.
New Phytol ; 220(2): 567-578, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29956839

RESUMO

Kin recognition is an important mediator of interactions within individuals of a species. Despite increasing evidence of kin recognition in natural plant populations, relatively little is known about kin recognition in crop species where numerous cultivars have been generated by artificial selection. We identified rice (Oryza sativa) cultivars with the ability for kin recognition from two sets of indica-inbred and indica-hybrid lines at different levels of genetic relatedness. We then assessed this ability among kin and nonkin and tested potential mechanisms in a series of controlled experiments and field trails. Rice cultivars with the ability for kin recognition were capable of detecting the presence of kin and nonkin and responded to them by altering root behavior and biomass allocation, particularly for grain yield. Furthermore, we assessed the role of root exudates and found a root-secreted nitrogen-rich allantoin component to be responsible for kin recognition in rice lines. Kin recognition in rice lines mediated by root exudates occurs in a cultivar-dependent manner. Rice cultivars with the ability for kin recognition may increase grain yield in the presence of kin. Such an improvement of grain yield by kin recognition of cultivar mixtures offers many implications and applications in rice production.


Assuntos
Oryza/fisiologia , Biomassa , Grão Comestível , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia
10.
Pestic Biochem Physiol ; 143: 224-230, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183596

RESUMO

Despite increasing knowledge of allelochemicals as leads for new herbicides, relatively little is known about the mode of action of allelochemical-based herbicides on herbicide-resistant weeds. In this study, herbicidal activities of a series of allelochemical tricin-derived compounds were evaluated. Subsequently, a benzothiazine derivative 3-(2-chloro-4-methanesulfonyl)-benzoyl-hydroxy-2-methyl-2H-1,2-benzothiazine-1,1-dioxide with 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibiting activity was identified as a target compound on photosynthetic performance of penoxsulam-resistant versus -susceptible barnyardgrass (Echinochloa crus-galli). Regardless of barnyardgrass biotype, the benzothiazine derivative greatly affected chlorophyll fluorescence parameters (Fv/Fm, ETR1min and NPQ1min), reduced the chloroplast fluorescence levels and expression of HPPD gene. In particular, the benzothiazine derivative interfered with photosynthetic performance of resistant barnyardgrass more effectively than the allelochemical tricin itself. These results showed that the benzothiazine derivative effectively inhibited the growth of resistant barnyardgrass and its mode of action on photosynthesis system was similar to HPPD-inhibiting sulcotrione, making it an ideal lead compound for further development of allelochemical-based herbicide discovery.


Assuntos
Echinochloa/efeitos dos fármacos , Flavonoides/toxicidade , Resistência a Herbicidas , Feromônios/toxicidade , Plantas Daninhas/efeitos dos fármacos , Tiazinas/toxicidade , Clorofila/metabolismo , Echinochloa/genética , Echinochloa/metabolismo , Herbicidas/farmacologia , Oxirredutases/genética , Fotossíntese/efeitos dos fármacos , Plantas Daninhas/genética , Plantas Daninhas/metabolismo , Sulfonamidas/farmacologia , Uridina/análogos & derivados , Uridina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA