Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Hepatology ; 79(3): 606-623, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733267

RESUMO

BACKGROUND AND AIMS: Aerobic glycolysis reprogramming occurs during HSC activation, but how it is initiated and sustained remains unknown. We investigated the mechanisms by which canonical Wnt signaling regulated HSC glycolysis and the therapeutic implication for liver fibrosis. APPROACH AND RESULTS: Glycolysis was examined in HSC-LX2 cells upon manipulation of Wnt/ß-catenin signaling. Nuclear translocation of lactate dehydrogenase A (LDH-A) and its interaction with hypoxia-inducible factor-1α (HIF-1α) were investigated using molecular simulation and site-directed mutation assays. The pharmacological relevance of molecular discoveries was intensified in primary cultures, rodent models, and human samples. HSC glycolysis was enhanced by Wnt3a but reduced by ß-catenin inhibitor or small interfering RNA (siRNA). Wnt3a-induced rapid transactivation and high expression of LDH-A dependent on TCF4. Wnt/ß-catenin signaling also stimulated LDH-A nuclear translocation through importin ß2 interplay with a noncanonical nuclear location signal of LDH-A. Mechanically, LDH-A bound to HIF-1α and enhanced its stability by obstructing hydroxylation-mediated proteasome degradation, leading to increased transactivation of glycolytic genes. The Gly28 residue of LDH-A was identified to be responsible for the formation of the LDH-A/HIF-1α transcription complex and stabilization of HIF-1α. Furthermore, LDH-A-mediated glycolysis was required for HSC activation in the presence of Wnt3a. Results in vivo showed that HSC activation and liver fibrosis were alleviated by HSC-specific knockdown of LDH-A in mice. ß-catenin inhibitor XAV-939 mitigated HSC activation and liver fibrosis, which were abrogated by HSC-specific LDH-A overexpression in mice with fibrosis. CONCLUSIONS: Inhibition of HSC glycolysis by targeting Wnt/ß-catenin signaling and LDH-A had therapeutic promise for liver fibrosis.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Cirrose Hepática , Via de Sinalização Wnt , beta Catenina , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactato Desidrogenase 5/metabolismo , Via de Sinalização Wnt/fisiologia , Células Estreladas do Fígado/metabolismo
2.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731464

RESUMO

Artificially modified adsorbing materials mainly aim to remedy the disadvantages of natural materials as much as possible. Using clay materials such as rectorite, sodium bentonite and metakaolinite (solid waste material) as base materials, hydrothermally modified and unmodified materials were compared. CM-HT and CM (adsorbing materials) were prepared and used to adsorb and purify wastewater containing malachite green (MG) dye, and the two materials were characterized through methods such as BET, FT-IR, SEM and XRD. Results: (1) The optimal conditions for hydrothermal modification of CM-HT were a temperature of 150 °C, a time of 2 h, and a liquid/solid ratio 1:20. (2) Hydrothermal modification greatly increased the adsorptive effect. The measured maximum adsorption capacity of CM-HT for MG reached 290.45 mg/g (56.92% higher than that of CM). The theoretical maximum capacity was 625.15 mg/g (186.15% higher than that of CM). (3) Because Al-OH and Si-O-Al groups were reserved in unmodified clay mineral adsorbing materials with good adsorbing activity, after hydrothermal modification, the crystal structure of the clay became loosened along the direction of the c axis, and the interlayer space increased to partially exchange interlayer metal cations connected to the bottom oxygen, giving CM-HT higher electronegativity and creating more crystal defects and chemically active adsorbing sites for high-performance adsorption. (4) Chemical adsorption was the primary way by which CM-HT adsorbed cationic dye, while physical adsorption caused by developed pore canal was secondary. The adsorption reaction occurred spontaneously.

3.
Molecules ; 29(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398504

RESUMO

Polycarboxylic superplasticizers (PCEs) exhibit numerous advantages as concrete additives, effectively improving the stability and strength of concrete. However, competitive adsorption of PCEs occurs in the presence of clay, which may affect the cement dispersion and water-reducing performance. Extensive research has been conducted on the physical and mechanical properties of PCEs; however, the effect of the diverse structures of PCEs on the competitive adsorption on clay and cement hydration products has been rarely studied. This study employs Ca-montmorillonite (CaMMT) as a clay representative, by constructing adsorption models of PCEs on CaMMT and cement hydration products. A comparison of the adsorption energies considering different side-chain lengths of PCEs is included. Typically, the adsorption energy on CaMMT is lower than that on hydration products, leading PCEs to preferentially adsorb on the clay, thereby reducing its effective dosage in the cement particles. The challenge of PCE adsorption on CaMMT increases with the polymerization degree, and methylallyl polyoxyethylene ether (HPEG) exhibits lower adsorption energies on CaMMT. The density of states (DOS) analysis indicated the highest peak values of allyl polyethylene ether (APEG) as well as the peak area at n (polymerization degree) = 1. The total number of transferred electrons for APEG was 0.648, surpassing those of other PCEs. The interaction mechanism of PCEs with clay and hydration products is further elucidated through electronic gain/loss analysis, also providing a basis for the theoretical analysis on how to reduce the adsorption of PCEs on clay and the structural design of mud-resistant PCEs.

4.
Pharmacol Res ; 189: 106704, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813093

RESUMO

The roles of nuclear receptor subfamily 1 group d member 1 (NR1D1) and the circadian clock in liver fibrosis remain unclear. Here, we showed that liver clock genes, especially NR1D1, were dysregulated in mice with carbon tetrachloride (CCl4)-induced liver fibrosis. In turn, disruption of the circadian clock exacerbated experimental liver fibrosis. NR1D1-deficient mice were more sensitive to CCl4-induced liver fibrosis, supporting a critical role of NR1D1 in liver fibrosis development. Validation at the tissue and cellular levels showed that NR1D1 was primarily degraded by N6-methyladenosine (m6A) methylation in a CCl4-induced liver fibrosis model, and this result was also validated in rhythm-disordered mouse models. In addition, the degradation of NR1D1 further inhibited the phosphorylation of dynein-related protein 1-serine site 616 (DRP1S616), resulting in weakened mitochondrial fission function and increased mitochondrial DNA (mtDNA) release in hepatic stellate cell (HSC), which in turn activated the cGMP-AMP synthase (cGAS) pathway. Activation of the cGAS pathway induced a local inflammatory microenvironment that further stimulated liver fibrosis progression. Interestingly, in the NR1D1 overexpression model, we observed that DRP1S616 phosphorylation was restored, and cGAS pathway was also inhibited in HSCs, resulting in improved liver fibrosis. Taken together, our results suggest that targeting NR1D1 may be an effective approach to liver fibrosis prevention and management.


Assuntos
Relógios Circadianos , Células Estreladas do Fígado , Camundongos , Animais , Metilação , Cirrose Hepática/metabolismo , Fígado , Nucleotidiltransferases , Tetracloreto de Carbono/metabolismo , Tetracloreto de Carbono/farmacologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
5.
Environ Res ; 210: 112870, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35150714

RESUMO

With the boom of modern industry, the demand for precious metals palladium (Pd) and gold (Au) is increasing. However, the discharge of Pd(II) and Au(III) wastewater has caused environmental pollution and shortage of resources. Here, a new metal-organic frameworks adsorbent (MOF-AFH) was synthesized to efficiently separate Pd(II) and Au(III) from the water. The adsorption behavior of Pd(II) and Au(III) was explored at the same time. When gold and palladium are adsorbed separately, the adsorption capacity of gold and palladium is 389.02 mg/g and 191.27 mg/g, respectively. The equilibration time is 3 h. When gold and palladium coexist, the adsorption capacities of Au(III) and Pd(II) are 238.71 and 115.02 mg/g, respectively. The experimental results show that the adsorption of Pd(II) and Au(III) on MOF-AFH is a single-layer chemical adsorption, which is an endothermic process. MOF-AFH has excellent selectivity and after MOF-AFH is repeatedly used 4 times, the removal effect can still reach more than 90%. The adsorption mechanisms include reduction reaction and chelation with N and O-containing functional groups on the adsorbent. There is also electrostatic interaction for Au(III) adsorption. The adsorbent can be used to efficiently recover gold and palladium from wastewater.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Adsorção , Ouro , Cinética , Paládio , Águas Residuárias
6.
Neural Comput ; 31(5): 919-942, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30883278

RESUMO

Practical motor imagery electroencephalogram (EEG) data-based applications are limited by the waste of unlabeled samples in supervised learning and excessive time consumption in the pretraining period. A semisupervised deep stacking network with an adaptive learning rate strategy (SADSN) is proposed to solve the sample loss caused by supervised learning of EEG data and the extraction of manual features. The SADSN adopts the idea of an adaptive learning rate into a contrastive divergence (CD) algorithm to accelerate its convergence. Prior knowledge is introduced into the intermediary layer of the deep stacking network, and a restricted Boltzmann machine is trained by a semisupervised method in which the adjusting scope of the coefficient in learning rate is determined by performance analysis. Several EEG data sets are carried out to evaluate the performance of the proposed method. The results show that the recognition accuracy of SADSN is advanced with a more significant convergence rate and successfully classifies motor imagery.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Imaginação/fisiologia , Aprendizado de Máquina , Atividade Motora/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Interfaces Cérebro-Computador , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Humanos , Processamento de Sinais Assistido por Computador , Software
7.
J Cell Sci ; 127(Pt 2): 305-14, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24259663

RESUMO

Hepatic stellate cells (HSCs) are liver-specific pericytes that are recruited to vessels and secret pro-angiogenic cytokines, and thus actively involved in pathological vascularization during liver fibrosis. Peroxisome proliferator-activated receptor-γ (PPARγ) is a switch molecule controlling HSC activation. We investigated PPARγ regulation of angiogenic signal transduction and the molecular mechanisms involved in HSCs. Primary rat HSCs and liver sinusoidal endothelial cells (LSECs) were isolated and used in this study. Boyden chamber and tubulogenesis assays, identified that focal adhesion kinase (FAK)-RhoA signaling activated by platelet-derived growth factor (PDGF) was required for HSC motility and the associated vascularization. PDGF also stimulated vascular endothelial growth factor (VEGF) expression and HSC-driven vascularization through signals mediated by extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR). Gain- and loss-of-function analyses demonstrated that activation of PPARγ interrupted FAK-RhoA, ERK and mTOR cascades and inhibited HSC-based vascularization. Molecular evidence further revealed that PPARγ attenuation of HSC angiogenic properties was dependent on inhibition of PDGF-ß receptor expression. We concluded that PPARγ inhibited angiogenic signal transduction through transrepression of PDGF-ß receptor leading to reduced HSC motility, reduced VEGF expression, and thereby attenuated HSC-driven angiogenesis. PPARγ could be a molecular target for preventing vascular remolding in hepatic fibrosis.


Assuntos
Células Estreladas do Fígado/metabolismo , Neovascularização Fisiológica , PPAR gama/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Movimento Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/enzimologia , Masculino , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
8.
IUBMB Life ; 68(3): 220-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26865509

RESUMO

As a frequent event following chronic insult, liver fibrosis triggers wound healing reactions, with extracellular matrix components accumulated in the liver. During liver fibrogenesis, activation of hepatic stellate cells (HSCs) is the pivotal event. Fibrosis regression can feasibly be treated through pharmacological induction of HSC apoptosis. Herein we showed that dihydroartemisinin (DHA) improved liver histological architecture, decreased hepatic enzyme levels, and inhibited HSCs activation in the fibrotic rat liver. DHA also induced apoptosis of HSCs in such liver, as demonstrated by reduced distribution of α-SMA-positive cells and the presence of high number of cleaved-caspase-3-positive cells in vivo, as well as by down-regulation of Bcl-2 and up-regulation of Bax. In addition, in vitro experiments showed that DHA significantly inhibited HSC proliferation and led to dramatic morphological alterations in HSCs. we found that DHA disrupted mitochondrial functions and led to activation of caspase cascades in HSCs. Mechanistic investigations revealed that DHA induced HSC apoptosis through disrupting the phosphoinositide 3-kinase (PI3K)/Akt pathway and that PI3K specific inhibitor LY294002 mimicked the pro-apoptotic effect of DHA. DHA is a promising candidate for the prevention and treatment of liver fibrosis.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Células Estreladas do Fígado/fisiologia , Cirrose Hepática/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Animais , Ductos Biliares/patologia , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Células Estreladas do Fígado/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Derivado de Plaquetas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
9.
Lab Invest ; 95(11): 1234-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26302188

RESUMO

Epithelial-mesenchymal transition (EMT) occurs during adult tissue remodeling responses including carcinogenesis and fibrosis. Existing evidence reveals that hepatocytes can undergo EMT in adult liver, which is critically involved in chronic liver injury. We herein established a hypoxia-induced EMT model in human LO2 hepatocytes treated with cobalt chloride (CoCl2) in vitro, and evaluated the effects of curcumin, a natural antifibrotic compound, on hepatocyte EMT and explored the underlying molecular mechanisms. We found that CoCl2 at non-toxic doses induced a mesenchymal cell phenotype in hepatocytes and upregulated several mesenchymal markers including α-smooth muscle actin, vimentin, N-cadherin, fibronectin and Snail (an EMT-related transcription factor), but downregulated the epithelial marker E-cadherin in hepatocytes. However, curcumin reversed the morphological changes, abrogated the increased expression of mesenchymal markers, and rescued E-cadherin expression in CoCl2-treated hepatocytes, suggesting the inhibition of hepatocyte EMT in vitro. We further found that curcumin interfered with the transforming growth factor-ß (TGF-ß) signaling by reducing the expression of TGF-ß receptor I and inhibiting the expression and phosphorylation of Smad2 and Smad3. Use of SB431542, a specific inhibitor of TGF-ß receptor I, demonstrated that interference with the TGF-ß/Smad pathway was associated with curcumin suppression of hepatocyte EMT. Our in vivo data showed that curcumin affected hepatic EMT in rat fibrotic liver caused by carbon tetrachloride, which was associated with the inhibition of TGF-ß/Smad signaling. These findings characterized a novel mechanism by which curcumin modulated hepatocyte EMT implicated in treatment of liver fibrosis.


Assuntos
Cobalto/farmacologia , Curcumina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Células Cultivadas , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley
10.
J Cell Mol Med ; 18(7): 1392-406, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24779927

RESUMO

Hepatic fibrosis is concomitant with sinusoidal pathological angiogenesis, which has been highlighted as novel therapeutic targets for the treatment of chronic liver disease. Our prior studies have demonstrated that curcumin has potent antifibrotic activity, but the mechanisms remain to be elucidated. The current work demonstrated that curcumin ameliorated fibrotic injury and sinusoidal angiogenesis in rat liver with fibrosis caused by carbon tetrachloride. Curcumin reduced the expression of a number of angiogenic markers in fibrotic liver. Experiments in vitro showed that the viability and vascularization of rat liver sinusoidal endothelial cells and rat aortic ring angiogenesis were not impaired by curcumin. These results indicated that hepatic stellate cells (HSCs) that are characterized as liver-specific pericytes could be potential target cells for curcumin. Further investigations showed that curcumin inhibited VEGF expression in HSCs associated with disrupting platelet-derived growth factor-ß receptor (PDGF-ßR)/ERK and mTOR pathways. HSC motility and vascularization were also suppressed by curcumin associated with blocking PDGF-ßR/focal adhesion kinase/RhoA cascade. Gain- or loss-of-function analyses revealed that activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) was required for curcumin to inhibit angiogenic properties of HSCs. We concluded that curcumin attenuated sinusoidal angiogenesis in liver fibrosis possibly by targeting HSCs via a PPAR-γ activation-dependent mechanism. PPAR-γ could be a target molecule for reducing pathological angiogenesis during liver fibrosis.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Tetracloreto de Carbono/toxicidade , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Mol Life Sci ; 70(2): 259-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22699820

RESUMO

Hepatic fibrosis is a dynamic chronic liver disease occurring as a consequence of wound-healing responses to various hepatic injuries. This disorder is one of primary predictors for liver-associated morbidity and mortality worldwide. To date, no pharmacological agent has been approved for hepatic fibrosis or could be recommended for routine use in clinical context. Cellular and molecular understanding of hepatic fibrosis has revealed that peroxisome proliferator-activated receptor-γ (PPARγ), the functioning receptor for antidiabetic thiazolidinediones, plays a pivotal role in the pathobiology of hepatic stellate cells (HSCs), whose activation is the central event in the pathogenesis of hepatic fibrosis. Activation of PPARγ inhibits HSC collagen production and modulates HSC adipogenic phenotype at transcriptional and epigenetic levels. These molecular insights indicate PPARγ as a promising drug target for antifibrotic chemotherapy. Intensive animal studies have demonstrated that stimulation of PPARγ regulatory system through gene therapy approaches and PPARγ ligands has therapeutic promise for hepatic fibrosis induced by a variety of etiologies. At the same time, thiazolidinedione agents have been investigated for their clinical benefits primarily in patients with nonalcoholic steatohepatitis, a common metabolic liver disorder with high potential to progress to fibrosis and liver-related death. Although some studies have shown initial promise, none has established long-term efficacy in well-controlled randomized clinical trials. This comprehensive review covers the 10-year discoveries of the molecular basis for PPARγ regulation of HSC pathophysiology and then focuses on the animal investigations and clinical trials of various therapeutic modalities targeting PPARγ for hepatic fibrosis.


Assuntos
Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/terapia , PPAR gama/agonistas , PPAR gama/metabolismo , Tiazolidinedionas/uso terapêutico , Adipogenia , Animais , Transdiferenciação Celular , Células Cultivadas , Epigênese Genética , Matriz Extracelular/metabolismo , Terapia Genética , Humanos , Fígado/lesões , Cirrose Hepática/tratamento farmacológico , Camundongos , Terapia de Alvo Molecular , Ratos , Tiazolidinedionas/farmacologia
12.
Phytomedicine ; 123: 155174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039904

RESUMO

BACKGROUND: Banxia Xiexin decoction (BXD) is a traditional Chinese medicine with anti-colorectal cancer (CRC) activity. However, its bioactive constituents and its mechanism of action remain unclear. Herein, we explored the mechanism of action of BXD against CRC using a network pharmacology approach. METHODS: First, the targets of the main chemical components of BXD were predicted and collected through a database, and the intersection of compound targets and disease targets was obtained. Subsequently, protein-protein interaction network analysis, Gene Ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed to explore the potential mechanisms underlying the effects of BXD on CRC. Finally, a CRC cell model and a CRC xenograft model in nude mice were utilized to further determine the mechanism of action. RESULTS: A compound-therapeutic target network of BXD was constructed, revealing 146 cellular targets of BXD. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling axis was identified as the main target of BXD. Using in vitro and in vivo models, the activity of BXD against CRC was found to be mediated through ferritinophagy by targeting the PI3K/AKT/mTOR axis, leading to intracellular iron accumulation, reactive oxygen species activation, and finally ferroptosis. CONCLUSIONS: Through the application of network pharmacology and in vitro/in vivo validation experiments, we discovered that BXD exerts anti-CRC effects via the ferritinophagy pathway. Furthermore, we elucidated the potential mechanism underlying its induction of ferritinophagy. These findings demonstrate the significant potential of traditional drugs in managing CRC and support their wider clinical application in combination chemotherapy, targeted therapy, and immunotherapy.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Animais , Camundongos , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Camundongos Nus , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Fosfatidilinositol 3-Quinase , Serina-Treonina Quinases TOR , Neoplasias Colorretais/tratamento farmacológico , Simulação de Acoplamento Molecular , Mamíferos
13.
Organogenesis ; 20(1): 2386727, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39126669

RESUMO

With the rapid development of the field of life sciences, traditional 2D cell culture and animal models have long been unable to meet the urgent needs of modern biomedical research and new drug development. Establishing a new generation of experimental models and research models is of great significance for deeply understanding human health and disease processes, and developing effective treatment measures. As is well known, long research and development cycles, high risks, and high costs are the "three mountains" facing the development of new drugs today. Organoids and organ-on-chips technology can highly simulate and reproduce the human physiological environment and complex reactions in vitro, greatly improving the accuracy of drug clinical efficacy prediction, reducing drug development costs, and avoiding the defects of drug testing animal models. Therefore, organ-on-chips have enormous potential in medical diagnosis and treatment.


Assuntos
Sistemas Microfisiológicos , Animais , Humanos
14.
J Med Food ; 27(5): 404-418, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669311

RESUMO

This study aimed to explore the curative effect of curcumin on liver fibrosis and its correlation with the gut-liver axis in animal models. Histological staining was utilized to conduct histological analysis of the liver and intestine. An automatic biochemical analyzer or enzyme-linked immunosorbent assay system was utilized for analyzing the biochemical indexes in mice. Western blotting was employed to examine the level of relevant proteins. Furthermore, 16S rRNA high-throughput sequencing was performed to explore the impact of curcumin on intestinal microorganisms in rats with liver fibrosis. Ultrahigh-performance liquid chromatography with quadrupole-orbitrap mass spectrometry was utilized to analyze the effect of curcumin on rat feces metabolites. Our results showed that curcumin reduced the formation of collagen fibers caused by carbon tetrachloride in a dose-dependent manner. In addition, curcumin was able to restore intestinal permeability in rats with liver fibrosis. By adopting α diversity analysis (Chao 1 index, Shannon index, and Simpson index), we observed that both the diversity and the abundance of intestinal flora in rats with liver fibrosis were increased. The principal component analysis diagram demonstrated that curcumin could enhance the abundance and diversity of intestinal flora, and also restore the composition of model rat flora, which was similar to that in normal rats, thereby correcting the imbalance of flora in rats with liver fibrosis. In addition, curcumin regulated feces metabolites and their signaling pathways, including glycerophospholipid metabolism, pantothenate and CoA biosynthesis. Our findings suggest that curcumin exhibits antiliver fibrosis effects, and its antiliver fibrosis effects might correlate with gut-liver axis.


Assuntos
Curcumina , Microbioma Gastrointestinal , Cirrose Hepática , Fígado , Animais , Curcumina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ratos , Camundongos , Ratos Sprague-Dawley , Humanos , Tetracloreto de Carbono , Fezes/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Intestinos/efeitos dos fármacos
15.
J Mol Med (Berl) ; 102(7): 859-874, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38802517

RESUMO

The liver is a major metabolic organ of the human body and has a high incidence of diseases. In recent years, the annual incidence of liver disease has increased, seriously endangering human life and health. The study of the occurrence and development mechanism of liver diseases, discovery of new therapeutic targets, and establishment of new methods of medical treatment are major issues related to the national economy and people's livelihood. The development of stable and effective research models is expected to provide new insights into the pathogenesis of liver diseases and the search for more effective treatment options. Organoid technology is a new in vitro culture system, and organoids constructed by human cells can simulate the morphological structure, gene expression, and glucose and lipid metabolism of organs in vivo, providing a new model for related research on liver diseases. This paper reviews the latest research progress on liver organoids from the establishment of cell sources and application of liver organoids and discusses their application potential in the field of liver disease research.


Assuntos
Hepatopatias , Fígado , Organoides , Medicina Regenerativa , Organoides/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Hepatopatias/terapia , Hepatopatias/metabolismo , Hepatopatias/patologia , Animais , Medicina Regenerativa/métodos , Modelos Biológicos , Regeneração Hepática
16.
Front Pharmacol ; 15: 1302154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389928

RESUMO

Objectives: The study aimed to estimate the effects of National Volume-based Drug Procurement (NVBP) policy on drug utilization and medical expenditures of hypertension patients in public medical institutions in mainland China. Methods: This study used patient-level data based on electronic health records retrieved from the hospital information system of Nanjing Hospital of Chinese Medicine. Data on patients with hypertension who received care at this institution between 2016 and 2021 was used for analysis. Segmented linear regression models incorporating Interrupted Time Series (ITS) analysis were adopted to examine the effects of NVBP policy on drug utilization and health expenditures of eligible patients. Drug utilization volume and health expenditures were the primary outcomes used to assess the policy effects, and were measured using the prescription proportion of each drug class and the overall per-encounter treatment costs. Results: After the implementation of NVBP policy, the volume of non-winning drugs decreased from 54.42% to 36.25% for outpatient care and from 35.62% to 15.65% for inpatient care. The ITS analysis showed that the volume of bid-winning drugs in outpatient and inpatient settings increased by 9.55% (p < 0.001) and 6.31% (p < 0.001), respectively. The volume changes in non-volume based purchased (non-VBP) drugs differed between outpatients and inpatients. The proportion of non-VBP drugs immediately increased by 5.34% (p = 0.002) overall, and showed an upward trend in the outpatient setting specially (p < 0.001) during the post-intervention period. However, no significant differences were observed in the proportion of non-VBP drugs in inpatient setting (p > 0.05) in term of level change (p > 0.05) or trend change (p > 0.05). The average per-visit expenditures of outpatients across all drug groups exhibited an upward trend (p < 0.05) post policy intervention. In addition, a similar increase in the overall costs for chemical drugs were observed in inpatient settings (coefficient = 2,599.54, p = 0.036), with no statistically significant differences in the regression slope and level (p = 0.814). Conclusion: The usage proportion of bid-winning drugs increased significantly post policy intervention, indicating greater use of bid-winning drugs and the corresponding substitution of non-winning hypertensive drugs. Drug expenditures for outpatients and health expenditures per visit for inpatients also exhibited an upward trend, suggesting the importance of enhanced drug use management in Traditional Chinese Medicine hospital settings.

17.
Phytomedicine ; 132: 155658, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981149

RESUMO

BACKGROUND: Alcohol-related liver damage is the most prevalent chronic liver disease, which creates a heavy public health burden worldwide. The leaves of Ampelopsis grossedentata have been considered a popular tea and traditional herbal medicine in China for more than one thousand years, and possess anti-inflammatory, antioxidative, hepatoprotective, and antiviral activities. PURPOSE: We explored the protective effects of Ampelopsis grossedentata extract (AGE) against chronic alcohol-induced hepatic injury (alcoholic liver disease, ALD), aiming to elucidate its underlying mechanisms. METHODS: Firstly, UPLC-Q/TOF-MS analysis and network pharmacology were used to identify the constituents and elucidate the potential mechanisms of AGE against ALD. Secondly, C57BL/6 mice were pair-fed the Lieber-DeCarli diet containing either isocaloric maltodextrin or ethanol, AGE (150 and 300 mg/kg/d) and silymarin (200 mg/kg) were administered to chronic ethanol-fed mice for 7 weeks to evaluate the hepatoprotective effects. Serum biochemical parameters were determined, hepatic and ileum sections were used for histologic examination, and levels of inflammatory cytokines and oxidative stress in the liver were examined. The potential molecular mechanisms of AGE in improving ALD were demonstrated by RNA-seq, Western blotting analysis, and immunofluorescence staining. RESULTS: Ten main constituents of AGE were identified using UPLC-Q/TOF-MS and 274 potential ALD-related targets were identified. The enriched KEGG pathways included Toll-like receptor signaling pathway, NF-κB signaling pathway, and necroptosis. Moreover, in vivo experimental studies demonstrated that AGE significantly reduced serum aminotransferase levels and improved pathological abnormalities after chronic ethanol intake. Meanwhile, AGE improved ALD in mice by down-regulating oxidative stress and inflammatory cytokines. Furthermore, AGE notably repaired damaged intestinal epithelial barrier and suppressed the production of gut-derived lipopolysaccharide by elevating intestinal tight junction protein expression. Subsequent RNA-seq and experimental validation indicated that AGE inhibited NF-κB nuclear translocation, suppressed IκB-α, RIPK3 and MLKL phosphorylation and alleviated hepatic necroptosis in mice. CONCLUSION: In this study, we have demonstrated for the first time that AGE protects against alcoholic liver disease by regulating the gut-liver axis and inhibiting the TLR4/NF-κB/MLKL-mediated necroptosis pathway. Therefore, our present work provides important experimental evidence for AGE as a promising candidate for protection against ALD.


Assuntos
Ampelopsis , Hepatopatias Alcoólicas , Camundongos Endogâmicos C57BL , NF-kappa B , Farmacologia em Rede , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , NF-kappa B/metabolismo , Ampelopsis/química , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química , Etanol , Citocinas/metabolismo
18.
Apoptosis ; 18(2): 135-49, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23247439

RESUMO

Activation of hepatic stellate cells (HSCs) is a pivotal event in the pathogenesis of liver fibrosis. Pharmacological induction of HSC apoptosis could be a promising strategy for fibrosis regression. Natural product tetramethylpyrazine (TMP) exhibits potent antifibrotic activities in vivo. However, the molecular mechanisms remain to be defined. The present study aimed at investigating the anti-proliferative and pro-apoptotic effects of TMP on HSCs and elucidating the underlying mechanisms. Our results demonstrated that TMP had no apparent cytotoxic effects on hepatocytes, but significantly inhibited HSC proliferation and induced cell cycle arrest at the G0/G1 checkpoint. These effects were associated with TMP regulation of cyclin D1, p21, p27 and p53. Furthermore, we found that TMP disrupted mitochondrial functions and led to activation of caspase cascades in HSCs. Mechanistic investigations revealed that TMP selectively blocked the extracellular signal-regulated kinase (ERK) signaling and activated p53, which was required for TMP induction of caspase-dependent mitochondrial apoptosis in HSCs. Autodock simulations predicted that TMP could directly bind to ERK2 with two hydrogen bonds and low energy score, indicating that ERK2 could be a direct target molecule for TMP within HSCs. Moreover, TMP altered expression of some marker proteins relevant to HSC activation. These data collectively revealed that TMP modulation of ERK/p53 signaling led to mitochondrial-mediated and caspase-dependent apoptosis in HSCs in vitro. These studies provided mechanistic insights into the antifibrotic properties of TMP that may be exploited as a potential option for hepatic fibrosis.


Assuntos
Apoptose/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Mitocôndrias/fisiologia , Pirazinas/toxicidade , Proteína Supressora de Tumor p53/fisiologia , Animais , Apoptose/fisiologia , Caspases/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Cirrose Hepática/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ratos
19.
J Gastroenterol Hepatol ; 28(7): 1223-33, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23425217

RESUMO

BACKGROUND AND AIMS: Hepatic fibrosis represents a major cause of morbidity and mortality worldwide. The present study was to evaluate the antifibrogenesis effect of paeonol and involved mechanisms. METHODS: The degree of liver injury was evaluated biochemically by measuring serum and fibrotic markers and pathological examination. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and trypan blue staining. Cytotoxic effects were determined using lactate dehydrogenase release assay. Cell cycle was determined using single dyeing methods of propidium iodide (PI) by flow cytometry. Apoptosis was confirmed using double-staining of annexin V/PI and Hoechst. Western blot, immunofluorescence and real-time polymerase chain reaction were used to explore the molecular mechanisms. RESULTS: Treatment with paeonol significantly protected the liver from injury by reducing the activities of serum aspartate aminotransferase, alanine aminotransferase, improving the histological architecture of the liver, and by inhibiting activation of hepatic stellate cells (HSCs) in vivo. Interestingly, paeonol had no apparent cytotoxic effects but could markedly inhibit primary HSC proliferation and induced HSC cell cycle arrest at the G2/M checkpoint. These effects were caused by paeonol suppression of phosphorylation of cycle protein cdc2 and of CDK2. Moreover, that paeonol triggered mitochondrial apoptosis pathway and led to activation of caspase cascades in HSCs was found. Mechanistic investigations revealed that the nuclear factor-κB (NF-κB) pathway inhibition resulted in the earlier events. Furthermore, paeonol altered the expression of some marker proteins relevant to HSCs activation. CONCLUSION: Paeonol could inhibit HSC proliferation and induce mitochondrial apoptosis via disrupting NF-κB pathway, which might be the mechanisms of paeonol reduction of liver fibrosis.


Assuntos
Acetofenonas/farmacologia , Acetofenonas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Estreladas do Fígado/citologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , NF-kappa B/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Tetracloreto de Carbono , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Mitocôndrias/efeitos dos fármacos , Fitoterapia , Ratos , Ratos Sprague-Dawley
20.
J Immunol Res ; 2023: 4319551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844438

RESUMO

Objective: This study is aimed at exploring the effect of Qinghua Jianpi Recipe on preventing colon polyp recurrence and inhibiting the progress of "inflammatory cancer transformation." And another goal is to explore the changes of intestinal flora structure and intestinal inflammatory (immune) microenvironment of mice with colon polyps treated by Qinghua Jianpi Recipe and to clarify its mechanism. Methods: Clinical trials were conducted to confirm the therapeutic effect of Qinghua Jianpi Recipe on patients with inflammatory bowel disease. The inhibitory effect of Qinghua Jianpi Recipe on "inflammatory cancer transformation" of colon cancer was confirmed by an adenoma canceration mouse model. Histopathological examination was used to evaluate the effects of Qinghua Jianpi Recipe on intestinal inflammatory state, adenoma number, and pathological changes of adenoma model mice. The changes of inflammatory indexes in intestinal tissue were tested by ELISA. Intestinal flora was detected by 16S rRNA high-throughput sequencing. Short-chain fatty acid metabolism in the intestine was analyzed by targeted metabolomics. Network pharmacology analysis of possible mechanism of Qinghua Jianpi Recipe on colorectal cancer was performed. Western blot was used to detect the protein expression of the related signaling pathways. Results: Qinghua Jianpi Recipe can significantly improve intestinal inflammation status and function in patients with inflammatory bowel disease. Qinghua Jianpi Recipe could significantly improve the intestinal inflammatory activity and pathological damage of adenoma model mice and reduce the number of adenoma. Qinghua Jianpi Recipe significantly increased the levels of Peptostreptococcales_Tissierellales, NK4A214_group, Romboutsia, and other intestinal flora after intervention. Meanwhile, the treatment group of Qinghua Jianpi Recipe could reverse the changes of short-chain fatty acids. Network pharmacology analysis and experimental studies showed that Qinghua Jianpi Recipe inhibited the "inflammatory cancer transformation" of colon cancer by regulating intestinal barrier function-related proteins, inflammatory and immune-related signaling pathways, and free fatty acid receptor 2 (FFAR2). Conclusion: Qinghua Jianpi Recipe can improve the intestinal inflammatory activity and pathological damage of patient and adenoma cancer model mice. And its mechanism is related to the regulation of intestinal flora structure and abundance, short-chain fatty acid metabolism, intestinal barrier function, and inflammatory pathways.


Assuntos
Adenoma , Neoplasias do Colo , Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Doenças Inflamatórias Intestinais , Camundongos , Animais , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , RNA Ribossômico 16S , Doenças Inflamatórias Intestinais/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Adenoma/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA