Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(44): 16953-16963, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37886803

RESUMO

Photogranules are dense algal-bacterial aggregates used in aeration-free and carbon-negative wastewater treatment, wherein filamentous cyanobacteria (FC) are essential components. However, little is known about the functional role of symbiotic bacteria in photogranulation. Herein, we combined cyanobacterial isolation, reactor operation, and multiomics analysis to investigate the cyanobacterial-bacterial interaction during photogranulation. The addition of FC to the inoculated sludge achieved a 1.4-fold higher granule size than the control, and the aggregation capacity of FC-dominant photogranules was closely related to the extracellular polysaccharide (PS) concentration (R = 0.86). Importantly, we found that cross-feeding between FC and symbiotic bacteria for macromolecular PS synthesis is at the heart of photogranulation and substantially enhanced the granular stability. Chloroflexi-affiliated bacteria intertwined with FC throughout the photogranules and promoted PS biosynthesis using the partial nucleotide sugars produced by FC. Proteobacteria-affiliated bacteria were spatially close to FC, and highly expressed genes for vitamin B1 and B12 synthesis, contributing the necessary cofactors to promote FC proliferation. In addition, Bacteroidetes-affiliated bacteria degraded FC-derived carbohydrates and influenced granules development. Our metabolic characterization identified the functional role of symbiotic bacteria of FC during photogranulation and shed light on the critical cyanobacterial-bacterial interactions in photogranules from the viewpoint of cross-feeding.


Assuntos
Chloroflexi , Cianobactérias , Águas Residuárias , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos
2.
Environ Sci Technol ; 57(40): 15087-15098, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37754765

RESUMO

Bacteria are often exposed to long-term starvation during transportation and storage, during which a series of enzymes and metabolic pathways are activated to ensure survival. However, why the surface color of the bacteria changes during starvation is still not well-known. In this study, we found black anammox consortia suffering from long-term starvation contained 0.86 mmol gVSS-1 cytochrome c, which had no significant discrepancy compared with the red anammox consortia (P > 0.05), indicating cytochrome c was not the key issue for chromaticity change. Conversely, we found that under starvation conditions cysteine degradation is an important metabolic pathway for the blackening of the anammox consortia for H2S production. In particular, anammox bacteria contain large amounts of iron-rich nanoparticles, cytochrome c, and other iron-sulfur clusters that are converted to produce free iron. H2S combines with free iron in bacteria to form Fe-S compounds, which eventually exist stably as FeS2, mainly in the extracellular space. Interestingly, FeS2 could be oxidized by air aeration, which makes the consortia turn red again. The unique self-protection mechanism makes the whole consortia appear black, avoiding inhibition by high concentrations of H2S and achieving Fe storage. This study expands the understanding of the metabolites of anammox bacteria as well as the bacterial survival mechanism during starvation.

3.
Environ Res ; 211: 113052, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35276187

RESUMO

Although co-culture of microalgae has been found as a feasible strategy to improve biomass production, their interspecies relationships are not fully understood. Here, two algae taxa, Chlorella sp. and Phormidium sp., were mono-cultured and co-cultured in three photobioreactors for 70 days with periodically harvesting to investigate how dual-species interaction influence nitrogen recovery. Results showed that the co-culture system achieved a significantly higher protein production and nitrogen removal rate than those in the individual cultures at a C/N ratio of 3:1 (p < 0.05). Genome-Centered metagenomic analysis revealed their cooperative relationship exemplified by cross-feeding. Phormidium sp. had the ability to synthesize pseudo-cobalamin, and Chlorella sp. harbored the gene for remodeling the pseudo-cobalamin to bioavailable vitamin B12. Meanwhile, Chlorella sp. could contribute the costly amino acid and cofactors for Phormidium sp. Their symbiotic interaction facilitated extracellular polymeric substances (EPS) production and nitrogen recovery. The EPS concentration in co-culture was positively related to the settling efficiency (R2 = 0.774), which plays an essential role in nitrogen recovery. This study provides new insights into microbial interactions among the photoautotrophic community and emphasizes the importance of algal interspecies interaction in algae-based wastewater treatment.


Assuntos
Chlorella , Microalgas , Biomassa , Chlorella/metabolismo , Microalgas/metabolismo , Nitrogênio/análise , Vitamina B 12/análise , Vitamina B 12/metabolismo , Águas Residuárias/química
4.
J Nanosci Nanotechnol ; 16(4): 3669-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451686

RESUMO

Pure and Cl- incorporated ZnO nanofilms were grown by the ultrasonic spray-assisted chemical vapor deposition (CVD) method. The properties of the nanofilms were investigated. The effects of growth temperature and Cl- concentration on the crystal structure, morphology, and optical properties of the nanofilms were studied. Temperature plays an important role in the growth mode and morphology of the pure nanofilms. Preferential growth along the c-axis occurs only at modulating temperature. Lower temperature suppresses the preferential growth, and higher temperature suppresses the growth of the nanofilms. The morphologies of the nanofilms change from lamellar and spherical structures into hexagonal platelets, then into separated nanoparticles with an increase in the temperature. Incorporating Cl- results in the lattice contracting gradually along with c-axis. Grains composing the nanofilms refine, and the optical gap broadens with increasing of Cl- concentration in growth precursor. Incorporating Cl- could reduce oxygen vacancies and passivate the non-irradiated centers, thus enhancing the UV emission and suppressing the visible emission of ZnO nanofilms.


Assuntos
Cloro/química , Gases/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Sonicação/métodos , Óxido de Zinco/química , Cloro/efeitos da radiação , Cristalização/métodos , Gases/efeitos da radiação , Ondas de Choque de Alta Energia , Teste de Materiais , Membranas Artificiais , Nanopartículas Metálicas/efeitos da radiação , Tamanho da Partícula , Óxido de Zinco/efeitos da radiação
5.
ACS Omega ; 9(9): 10426-10439, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463325

RESUMO

Gas drainage with bedding boreholes is an efficient method for preventing gas and achieving coal and gas comining in underground mining engineering. An underground pressurized drilling method is proposed to maintain the borehole stability. However, the presence of natural fractures in coal seams poses challenges during pressurized drilling. Therefore, it is crucial to establish a low-leadage degradable drilling fluid system that minimizes coal seam damage. In this study, a degradable drilling fluid system was developed based on the characteristics of coal seams. The performance and influencing factors of the drilling fluid and the degrading capability of cellulase were examined. Moreover, the damage of the drilling fluid on fractured coal seams was investigated using core flow test methods. The results showed that additives significantly improved the rheology, filtration, and inhibition of the drilling fluid. The drilling fluid system exhibited excellent stability, rheological properties, low filtration, and sealing performance in coal seam environments. However, drilling fluid invasion and mud cake blockage negatively affected gas flow in fractured coal seams, and a higher content of filtrate reducer hindered the recovery of the gas flow rate. Cellulase was used to degrade polymers and alleviate the challenge of mud cake removal after drilling. Research on the influencing factors of cellulase indicates that the degradation efficiency of cellulase enzymes is influenced by the temperature, pH, salinity, and solid-phase content. For polluted coal samples, the gas flow rate significantly recovered after treatment with a cellulase solution. This study provides insights into a degradable drilling fluid system that can enhance underground pressurized drilling methods and minimize reservoir damage.

6.
Sci Total Environ ; 914: 169975, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218496

RESUMO

Recently, photogranules composed of bacteria and microalgae for carbon-negative nitrogen removal receive extensive attention worldwide, yet which type of bacteria is helpful for rapid formation of photogranules and whether they depend on signaling communication remain elusive. Varied signaling communication was analyzed using metagenomic method among bacteria and microalgae in via of two types of experimentally verified signaling molecule from bacteria to microalgae, which include indole-3-acetic acid (IAA) and N-acyl homoserine lactones (AHLs) during the operation of photo-bioreactors. Signaling communication is helpful for the adaptability of bacteria to survive with algae. Compared with non-signaling bacteria, signaling bacteria more easily adapt to the varied conditions, evidenced by the increased abundance in the operated reactors. Signaling bacteria are easier to enter the phycosphere, and they dominate the interactions between bacteria and algae rather than non-signaling bacteria. The co-abundance groups (CAGs) with signaling bacteria possess higher abundance than that without signaling bacteria (22.27 % and 6.67 %). Importantly, signaling bacteria accessibly interact with microalgae, which possess higher degree centralities and 32.50 % of them are keystone nodes in the network, in contrast to only 18.66 % of non-signaling bacteria. Thauera carrying both IAA and AHLs synthase genes are highly enriched and positively correlated with nitrogen removal rate. Our work not only highlights the essential roles of signaling communication between microalgae and bacteria in the development of photogranules, but also enriches our understanding of microbial sociobiology.


Assuntos
Microalgas , Percepção de Quorum , Bactérias , Acil-Butirolactonas , Comunicação
7.
Water Res ; 254: 121381, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442606

RESUMO

The role of ray radiation from the sunlight acting on organisms has long-term been investigated. However, how the light with different wavelengths affects nitrification and the involved nitrifiers are still elusive. Here, we found more than 60 % of differentially expressed genes (DEGs) in nitrifiers were observed under irradiation of blue light with wavelengths of 440-480 nm, which were 13.4 % and 20.3 % under red light and white light irradiation respectively. Blue light was more helpful to achieve partial nitrification rather than white light or red light, where ammonium oxidization by ammonia-oxidizing archaea (AOA) with the increased relative abundance from 8.6 % to 14.2 % played a vital role. This was further evidenced by the enhanced TCA cycle, reactive oxygen species (ROS) scavenge and DNA repair capacity in AOA under blue-light irradiation. In contrast, nitrite-oxidizing bacteria (NOB) was inhibited severely to achieve partial nitrification, and the newly discovered encoded blue light photoreceptor proteins made them more sensitive to blue light and hindered cell activity. Ammonia-oxidizing bacteria (AOB) expressed genes for DNA repair capacity under blue-light irradiation, which ensured their tiny impact by light irradiation. This study provided valuable insights into the photosensitivity mechanism of nitrifiers and shed light on the diverse regulatory by light with different radiation wavelengths in artificial systems, broadening our comprehension of the nitrogen cycle on earth.


Assuntos
Amônia , Nitrificação , Amônia/metabolismo , Solo , Oxirredução , Microbiologia do Solo , Filogenia , Archaea/genética , Archaea/metabolismo
8.
Diagn Microbiol Infect Dis ; 106(3): 115942, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37116242

RESUMO

BACKGROUND: The purpose of this study was to evaluate the changes in serum (1-3)-ß-D-glucan (BDG) in adults due to intravenous immunoglobulins (IVIG) infusion and the factors that affect these changes. METHODS: Patients who had BDG tests both before and after IVIG infusion during hospitalization were retrospectively included, and trends in BDG values were analyzed before and after IVIG infusion. Factors associated with false-positive BDG were then explored using univariate analysis. RESULTS: A total of 347 serum BDG tests from 131 patients were included in the analysis, and 71.8% (94/131) patients had false positive serum BDG after IVIG infusion. All BDG values on day 7 were negative. Univariate analysis showed that patients with false positive BDG tests had higher daily IVIG doses (P = 0.043) and higher levels of serum IgG increments (P = 0.001). The median peak blood BDG on day 1 after completion of IVIG infusion was 199.6 (154.5-277.7, inter-quartile ranges (IQR)) pg/mL, and both the peak BDG and incremental BDG values (ΔBDG, BDG at the first day after IVIG infusion minus BDG before infusion) were slightly and positively correlated with ΔIgG (BDG vs. ΔIgG, P = 0.0016; ΔBDG vs. ΔIgG, P = 0.0003). CONCLUSION: Most adults showed false positive BDG tests after IVIG infusion and negative BDG tests within 1 week. Daily IVIG dosage may contribute to the evaluation of ΔBDG.


Assuntos
Imunoglobulinas Intravenosas , beta-Glucanas , Adulto , Humanos , Estudos Retrospectivos , Hospitalização , Sensibilidade e Especificidade
9.
Water Res ; 241: 120144, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37300965

RESUMO

Photogranules composed of algae, nitrifiers, and anammox bacteria are promising for nitrogen removal from wastewater with reduced aeration and carbon emissions. However, it is difficult to be achieved as the potential inhibition of anammox bacteria by light. In this study, a syntrophic algal-partial nitrification/anammox granular sludge process was developed, with a nitrogen removal rate of 294.5 mg N/(L·d). We found the symbiosis in the community promoted the adaptation of anammox bacteria under light, and cross-feeding played an important role. Microalgae in the outer layers of photogranules sheltered most of the light and supplied cofactors and amino acids to promote nitrogen removal. In particular, Myxococcota MYX1 degraded the extracellular proteins produced by microalgae, providing amino acids to the entire bacterial community, which helped anammox bacteria save metabolic energy and adapt to light. Notably, the anammox bacteria Candidatus Brocadia exhibited unique light-sensing potential and adaptations to light irradiation compared with Candidatus Jettenia, including diverse DNA repair, scavenging of reactive oxygen species, cell movement. The phytochrome-like proteins encoded by Candidatus Brocadia further facilitated their spatial positioning and niche partitioning in photogranules. This study provides insights into the response of anammox bacteria in the algae-bacteria symbiosis system and suggests its potential application for carbon-negative nitrogen removal.


Assuntos
Oxidação Anaeróbia da Amônia , Reatores Biológicos , Reatores Biológicos/microbiologia , Oxirredução , Águas Residuárias , Esgotos/microbiologia , Nitrificação , Bactérias/metabolismo , Nitrogênio/metabolismo , Desnitrificação
10.
Water Res ; 247: 120821, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952398

RESUMO

Reclaimed water has been widely utilized for water resource replenishment, yet little is known regarding its impacts on various microorganisms in the receiving water. To address this knowledge gap, we systematically investigated the responses of bacteria and algae to the recharge of reclaimed water by using the high-throughput sequencing technology in the urban Chaobai River. After the inputs of reclaimed water, lower contents of NO2--N, NH4+-N, and TP were observed in the downstream section compared to that of upstream without reclaimed water, indicating that reclaimed water could improve the water quality of the receiving water. Correspondingly, both bacterial and algal communities showed the decreased network complexity in the downstream section, but many common freshwater bacteria and typical bloom-forming algae were dominant in the downstream, potentially suggesting that algae were more sensitive to the local environmental conditions. More importantly, although nitrogen and phosphorus served as the paramount factors in shaping both bacterial and algal communities, environmental selection contributed more to algal rather than bacterial community, and simultaneously algal variations could further affect bacterial dynamics in the urban river. Overall, these findings revealed distinct characteristics of bacteria and algae in responding to the reclaimed water recharge, highlighting the superiority of algae in indicating environmental changes, especially in monitoring and regulating the replenishment of reclaimed water in urban rivers.


Assuntos
Bactérias , Rios , Qualidade da Água , Água Doce , China , Monitoramento Ambiental
11.
Front Med (Lausanne) ; 10: 1093830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181368

RESUMO

Background: Pelvic floor muscle strength is well-known to be associated with female sexual function. However, there were a few studies that reported on the relationship between pelvic floor muscle strength and female sexual function in pregnant women, and the presented results were inconsistent. Nulliparae represent a specific cohort with simplicity to exclude confounding factors that are caused by parity. The present study aimed to explore the association of pelvic floor muscle strength and sexual function based on the Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12) of nulliparae during pregnancy. Methods: This is the second analysis of the baseline data from a randomized controlled trial (RCT), which aimed to study the protective efficacy of pelvic floor muscle training on stress urinary incontinence at 6th week postpartum (registration number: ChiCTR2000029618). Nulliparae aged 20-40 years with singleton pregnancy before 16 weeks of gestation were enrolled in this study, and data, including participants' demographic information, the Modified Oxford Scale (MOS), and PISQ-12, were collected. Eligible nulliparae were divided into two groups: Group MOS > 3 and Group MOS ≤ 3. Demographic information of the two groups was compared. Sexual function based on the PISQ-12 scores of the two groups was compared. A comparison of the PISQ-12 scores between the two groups was calculated by the Mann-Whitney U-test using SPSS version 23.0. Results: A total of 735 eligible nulliparae were enrolled in this study. Along with MOS grading up, PISQ-12 scores tended to get lower. Of the 735 nulliparae, there were 378 and 357 participants included in Group MOS > 3 and Group MOS ≤ 3, respectively. The PISQ-12 scores of Group MOS > 3 were significantly lower than those of Group MOS ≤ 3 (11 vs. 12, p < 0.001). The scores of the frequency of feeling sexual desire, orgasm achievement, sexual excitement, sexual activity satisfaction, sexual intercourse pain, fear of urinary incontinence, and negative emotion reactions with the sexual intercourse of Group MOS > 3 were lower than those of Group MOS ≤ 3 (p < 0.05). Conclusion: Pelvic floor muscle strength was positively associated with sexual function based on the questionnaire of young nulliparae during their first trimester. Up to half of the nulliparae during the first trimester were suffering from weak pelvic floor muscle strength and nearly a quarter of the nulliparae were facing this weakness combined with sexual dysfunction. Trial registration: This study has been registered at http://www.chictr.org.cn (registration number: ChiCTR2000029618).

12.
Front Bioeng Biotechnol ; 10: 851376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480974

RESUMO

Algal-bacterial water treatment is more effective for better harvesting and promotes energy savings than other traditional treatments, while the relationships between them are multifarious. Among all the interactions, quorum sensing plays an essential ecological role. However, the relative contributions of signaling in the interaction between algae and bacteria are not clear. To elucidate the role of quorum sensing by indole-3-acetic acid (IAA) in terms of the algal-bacterial interaction during the nitrogen removal process, the bioreactors, respectively, inoculated with Chlorella, Phormidium, and both of them were started. We manifest the existence of multiple signaling-related proteins by alignment with the constructed database, and the signaling was analyzed using metagenomic sequence data obtained during bioreactor operation. We found that IAA was mainly synthetized depending on indole-3-acetamide (IAM) and indole-3-pyruvic acid (IPA) pathways by calculating the gene abundance of IAA synthetase. Both Chlorella and the co-culture reactor possessed higher nitrogen removal rate (NRR) than the Phormidium reactor, and the abundance profile of the signaling-related gene is similar with the NRR. The signaling-related gene abundance increased in Chlorella and co-culture reactors but decreased in the Phormidium reactor. Pseudomonas, Hydrogenophaga, and Zoogloea are the dominant signaled bacteria. Chlorella is the dominant signaled algae. The relative abundance of total signaled bacteria in the whole bacterial community increased during the start-up in Chlorella and co-culture reactors. According to the network analysis, phytoplankton prefers to positively correlate with signaled bacteria than non-signaled bacteria, which indicated that the signaling influences the algal-bacterial interaction. These findings hint at the significance of algal-bacterial signaling in this interkingdom interaction during nitrogen removal.

13.
Immunobiology ; 220(6): 775-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25791524

RESUMO

Intrauterine growth restriction (IUGR) impairs the immunity of both piglets and humans. We hypothesized that the poor cytokine secreting ability of the small intestines of IUGR neonatal piglets might be associated with lower CD4(+) and CD8(+) T lymphocytes. Therefore, we used neonatal piglets as IUGR models to investigate the effects of IUGR on the CD4(+) and CD8(+) T lymphocyte cell populations. Six normal-birth-weight (NBW) and six IUGR neonatal piglets were chosen and divided into NBW and IUGR groups, respectively. The cytokine and immunoglobulin levels in the blood; the CD4(+) and CD8(+) T lymphocyte contents in the thymus, blood, spleen, mesenteric lymph nodes, jejunum and ileum; and the distribution of CD4(+) and CD8(+) T lymphocytes in the ileum were measured. We further compared the gene expression and protein distribution of MHC-II in the jejunum and ileum of the NBW and IUGR neonatal piglets. The results showed that the IUGR piglets exhibited lower (P<0.05) serum levels of IL1ß, IL2 and IL10, as well as increased percentages of CD8 cells in the blood, spleen and thymus (P<0.05) and increased CD4 gene expression in the thymus (P<0.05). However, the CD4:CD8 ratio in the blood was decreased (P<0.05), the CD8 content in the MLN was lowered (P<0.05), and the expression of the CD4, CD8 and MHC-II genes was down-regulated (P<0.05) in the jejunum and ileum of the IUGR piglets compared with those of the NBW piglets. The results suggest that impaired intestinal mucosal immunity is associated with an imbalance in the T lymphocyte sub-populations in IUGR neonatal piglets.


Assuntos
Retardo do Crescimento Fetal , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Intestinos/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Animais Recém-Nascidos , Antígenos de Superfície/metabolismo , Feminino , Imuno-Histoquímica , Imunofenotipagem , Mucosa Intestinal/metabolismo , Gravidez , Baço/imunologia , Baço/metabolismo , Suínos , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA