Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110692

RESUMO

Silicon-based composites are promising candidates as the next-generation anode materials for high-performance lithium-ion batteries (LIBs) due to their high theoretical specific capacity, abundant reserves, and reliable security. However, expensive raw materials and complicated preparation processes give silicon carbon anode a high price and poor batch stability, which become a stumbling block to its large-scale practical application. In this work, a novel ball milling-catalytic pyrolysis method is developed to fabricate a silicon nanosheet@amorphous carbon/N-doped graphene (Si-NSs@C/NG) composite with cheap high-purity micron-size silica powder and melamine as raw materials. Through systematic characterizations such as XRD, Raman, SEM, TEM and XPS, the formation process of NG and a Si-NSs@C/NG composite is graphically demonstrated. Si-NSs@C is uniformly intercalated between NG nanosheets, and these two kinds of two-dimensional (2D) materials are combined in a surface-to-surface manner, which immensely buffers the stress changes caused by volume expansion and contraction of Si-NSs. Attributed to the excellent electrical conductivity of graphene layer and the coating layer, the initial reversible specific capacity of Si-NSs@C/NG is 807.9 mAh g-1 at 200 mA g-1, with a capacity retention rate of 81% in 120 cycles, exhibiting great potential for application as an anode material for LIBs. More importantly, the simple and effective process and cheap precursors could greatly reduce the production cost and promote the commercialization of silicon/carbon composites.

2.
Chem Commun (Camb) ; 56(7): 1089-1092, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31894777

RESUMO

The coinciding effects of carbon defects and oxygen functional groups in porous graphene were demonstrated in this work. The species and distributions of oxygen functional groups evolved with the types of defects, especially those containing C[double bond, length as m-dash]O bonds mainly distributed along the edge of ring defects, and enhanced Na+ storage.

3.
ACS Appl Mater Interfaces ; 12(46): 52208-52220, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33146990

RESUMO

Heterostructures with a rich phase boundary are attractive for surface-mediated microwave absorption (MA) materials. However, understanding the MA mechanisms behind the heterogeneous interface remains a challenge. Herein, a phosphine (PH3) vapor-assisted phase and structure engineering strategy was proposed to construct three-dimensional (3D) porous Ni12P5/Ni2P heterostructures as microwave absorbers and explore the role of the heterointerface in MA performance. The results indicated that the heterogeneous interface between Ni12P5 and Ni2P not only creates sufficient lattice defects for inducing dipolar polarization but also triggers uneven spatial charge distribution for enhancing interface polarization. Furthermore, the porous structure and proper component could provide an abundant heterogeneous interface to strengthen the above polarization relaxation process, thereby greatly optimizing the electromagnetic parameters and improving the MA performance. Profited by 3D porous heterostructure design, P400 could achieve the maximum reflection loss of -50.06 dB and an absorption bandwidth of 3.30 GHz with an ultrathin thickness of 1.20 mm. Furthermore, simulation results confirmed its superior ability (14.97 dB m2 at 90°) to reduce the radar cross section in practical applications. This finding may shed light on the understanding and design of advanced heterogeneous MA materials.

4.
ACS Appl Mater Interfaces ; 11(12): 11421-11430, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30801167

RESUMO

Phosphorus doping is an effective approach to tailor the surface chemistry of carbon materials. In this work, two-dimensional graphene, as a simplified model for all sp2 hybrid carbon allotropes, is employed to explore the surface chemistry of P-doped carbon materials. Thermally reduced graphene oxide, with abundant residual oxygen functionalities, is doped by phosphorus heteroatoms through H3PO4 activation, followed by passivation in an inert atmosphere. The structural evolution of the phosphorus species in the carbon lattice during the thermal treatment is systematically studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy with the assistance of first-principles calculations. The C3-P═O configuration is identified as the most stable structure in the graphene lattice and plays a key role in stabilizing the electrochemical interface between the electrode and electrolyte. These features enable an electrode based on P-doped graphene to exhibit an enlarged potential window of 1.5 V in an aqueous electrolyte, a remarkable improved cycling stability, and an ultralow leak current. Therefore, this contribution provides insights for designing phosphorus-doped carbon materials toward electrocatalysis, energy-related applications, and so forth.

5.
ChemSusChem ; 8(17): 2917-26, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26014119

RESUMO

Using graphene oxide and a cobalt salt as precursor, a three-dimensional graphene aerogel with embedded Co3 O4 nanoparticles (3D Co3 O4 -RGO aerogel) is prepared by means of a solvothermal approach and subsequent freeze-drying and thermal reduction. The obtained 3D Co3 O4 -RGO aerogel has a high specific capacitance of 660 F g(-1) at 0.5 A g(-1) and a high rate capability of 65.1 % retention at 50 A g(-1) in a three-electrode system. Furthermore, the material is used as cathode to fabricate an asymmetric supercapacitor utilizing a hierarchical porous carbon (HPC) as anode and 6 M KOH aqueous solution as electrolyte. In a voltage range of 0.0 to 1.5 V, the device exhibits a high energy density of 40.65 Wh kg(-1) and a power density of 340 W kg(-1) and shows a high cycling stability (92.92 % capacitance retention after 2000 cycles). After charging for only 30 s, three CR2032 coin-type asymmetric supercapacitors in series can drive a light-emitting-diode (LED) bulb brightly for 30 min, which remains effective even after 1 h.


Assuntos
Cobalto/química , Eletrodos , Géis , Grafite/química , Óxidos/química , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Chem Commun (Camb) ; 48(57): 7149-51, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22688179

RESUMO

A three-dimensional bubble graphene film, with controllable and uniform macropores and tailorable microstructure, was fabricated by a facile hard templating strategy and exhibit extraordinary electrochemical capacitance with high rate capability (1.0 V s(-1)).


Assuntos
Capacitância Elétrica , Grafite/química , Microtecnologia/métodos , Polimetil Metacrilato/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA