Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 188: 105286, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464339

RESUMO

The core elements of entomopathogenic nematode toxicity towards the fall armyworm Spodoptera frugiperda are associated with symbiotic bacteria. These microbes provide independent control effects and are reported to have repellency to insect pests. However, the ecological background of this nematode-bacteria-insect communication module is elusive. This work aims to identify key chemical cues which drive the trophic interactions through olfactory reception of S. frugiperda, and to inspire implementations with these isolated behavioral regulators in the corn field. A total of 657 volatiles were found within 13 symbiotic bacterial strains, and five of them induced significant electrophysiological responses of S. frugiperda larvae. 2-Hexynoic acid was demonstrated to exhibit a dominant role in deterring S. frugiperda larvae from feeding and localization. Field implementations with this novel volatile deterrent have resulted in fortified nematode applications. 2-Hexynoic acid acts as an excellent novel deterrent and presents remarkable application potential against fall armyworm larvae. Emissions from symbiotic bacteria of entomopathogenic nematodes are key players in chemical communication among insects, nematodes, and microbes. The olfactory perceptions and molecular targets for this volatile are worthy of future research.


Assuntos
Bactérias , Nematoides , Animais , Larva , Spodoptera , Zea mays
2.
Int J Biol Macromol ; 268(Pt 1): 131503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663697

RESUMO

Herbivorous insects utilize intricate olfactory mechanisms to locate food plants. The chemical communication of insect-plant in primitive lineage offers insights into evolutionary milestones of divergent olfactory modalities. Here, we focus on a system endemic to the Qinghai-Tibetan Plateau to unravel the chemical and molecular basis of food preference in ancestral Lepidoptera. We conducted volatile profiling, neural electrophysiology, and chemotaxis assays with a panel of host plant organs to identify attractants for Himalaya ghost moth Thitarodes xiaojinensis larvae, the primitive host of medicinal Ophiocordyceps sinensis fungus. Using a DREAM approach based on odorant induced transcriptomes and subsequent deorphanization tests, we elucidated the odorant receptors responsible for coding bioactive volatiles. Contrary to allocation signals in most plant-feeding insects, T. xiaojinensis larvae utilize tricosane from the bulbil as the main attractant for locating native host plant. We deorphanized a TxiaOR17b, an indispensable odorant receptor resulting from tandem duplication of OR17, for transducing olfactory signals in response to tricosane. The discovery of this ligand-receptor pair suggests a survival strategy based on food location via olfaction in ancestral Lepidoptera, which synchronizes both plant asexual reproduction and peak hatch periods of insect larvae.


Assuntos
Larva , Mariposas , Receptores Odorantes , Animais , Mariposas/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Filogenia , Quimiotaxia , Álcoois Graxos/farmacologia , Álcoois Graxos/química
3.
Int J Mol Med ; 39(5): 1119-1126, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28393202

RESUMO

Endothelial cell dysfunction and inflammatory responses are important early contributors to the occurrence and development of atherosclerosis (AS), which still remains to be decoded. Ubiquitin-fold modifier 1 (Ufm1) is a new member of the ubiquitin-like protein family, and its biological function remains largely unknown, particularly in endothelial cell injury and inflammatory responses. In the present study, we showed that Ufm1 was highly expressed in both the nucleus and cytoplasm of human umbilical vein endothelial cells (HUVECs). We also demonstrated that the Ufm1 expression level was increased following lipopolysaccharide (LPS)­induced inflammation in HUVECs. Moreover, overexpression of Ufm1 in HUVECs alleviated the inflammatory responses induced by LPS treatment. Additionally, we found that Ufm1 overexpression inhibited the nuclear translocation of nuclear factor-κB (NF-κB) after LPS treatment, suggesting its implication in the LPS/Toll-like receptor 4 (TLR4)/NF-κB pathway. Taken together, in addition to decoding its expression pattern in endothelial cells, we showed for the first time that Ufm1 is upregulated in LPS-induced inflammation and Ufm1 plays an inhibitory role in inflammatory responses by targeting NF-κB nuclear translocation. Thus, Ufm1 may be a novel gene that protects against inflammatory responses.


Assuntos
Células Endoteliais/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , NF-kappa B/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Modelos Biológicos , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA