Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Physiol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850061

RESUMO

Drought is one of the major threats to forest productivity. Oxidation stress is common in drought-stressed plants, and plants need to maintain normal life activities through complex reactive oxygen scavenging mechanisms. However, the molecular links between epigenetics, oxidation stress, and drought in poplar (Populus) remain poorly understood. Here, we found that Populus plants overexpressing PtrMYB94, which encodes a R2R3 MYB transcription factor that regulates the ABA signaling pathway, displayed increased tolerance to extreme drought stress via up-regulation of embryogenic cell phosphoprotein 44 (PtrECPP44) expression. Further investigation revealed that PtrMYB94 could recruit the histone deacetylases PtrHDA907/908 to the promoter of PtrECPP44 and decrease acetylation at lysine residues 9, 14 and 27 of histone H3, leading to relatively low transcriptional expression levels under normal conditions. Drought induced the expression of PtrMYB94 while preventing interaction of PtrMYB94 with PtrHDA907/908, which relaxed the chromatin structure and facilitated the binding of RNA polymerase II to the PtrECPP44 promoter. The upregulation of PtrECPP44 helped poplar alleviate oxidative damage and maintain normal cell activities. This study establishes a PtrMYB94-PtrECPP44 transcriptional regulatory module modified by PtrHDA907/908 in modulating drought-induced oxidative stress recovery. Therefore, our study reveals a oxidative regulatory mechanism in response to drought stress and provides insights into molecular breeding for stress resistance in poplar.

2.
J Exp Bot ; 70(2): 519-528, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30380101

RESUMO

Abscisic acid (ABA) plays a vital role in responses to abiotic stresses that allow plants to cope with environmental challenges. In this study, we analyzed ABA receptors of subfamily III as the potential targets of Cytosolic ABA Receptor Kinase 1 (CARK1). We previously found that CARK1 phosphorylated the subfamily III member RCAR11 at a distinct threonine residue (T78). Our study now shows the physical interaction of CARK1 with the receptors RCAR12/13/14 in vitro and in vivo. The catalytically inactive form CARK1-N204A did not interact with the receptors. Phosphorylation of these ABA receptors in vitro occurred at a serine/threonine amino acid residue corresponding to T78 in RCAR11, which is located in the loop of ß3 within a conserved site. Further analysis revealed that the phosphorylation of RCAR11T78 could increase the sensitivity of the pyr1pyl1pyl2pyl4 quadruple mutant (1124) to ABA, including the inhibition of root elongation and increasing drought tolerance. The analysis of CARK1:1124 complementation and the expression of ABA-related genes indicated that CARK1 could rescue the insensitivity of 1124 to ABA. Our results indicate that CARK1 tends to phosphorylate subfamily III ABA receptors, and the phosphosites RCAR11T78, RCAR12T105, RCAR13T101, and RCAR14S81 are the major sites involved in the activation of the ABA response pathway.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Fosforilação
3.
Plant Cell Environ ; 41(1): 231-244, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29044697

RESUMO

The phytohormone abscisic acid (ABA) plays an important role in regulating plant growth, development, and adaption to various environmental stresses. Regulatory components of ABA receptors (RCARs, also known as PYR/PYLs) sense ABA and initiate ABA signalling through inhibiting the activities of protein phosphatase 2C in Arabidopsis. However, the way in which ABA receptors are regulated is not well known. A DWD protein AtRAE1 (for RNA export factor 1 in Arabidopsis), which may act as a substrate receptor of CUL4-DDB1 E3 ligase, is an interacting partner of RCAR1/PYL9. The physical interaction between RCAR1 and AtRAE1 is confirmed in vitro and in vivo. Overexpression of AtRAE1 in Arabidopsis causes reduced sensitivity of plants to ABA, whereas suppression of AtRAE1 causes increased sensitivity to ABA. Analysis of protein stability demonstrates that RCAR1 is ubiquitinated and degraded in plant cells and AtRAE1 regulates the degradation speed of RCAR1. Our findings indicate that AtRAE1 likely participates in ABA signalling through regulating the degradation of ABA receptor RCAR1.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteólise , Transdução de Sinais , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Desidratação , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Peptídeos e Proteínas de Sinalização Intracelular , Mutação/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo
4.
Plant Cell Rep ; 37(9): 1269-1278, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29947951

RESUMO

KEY MESSAGE: The RING-type E3 ligase AtARRE participates in the plant ABA responding as a negative regulator. Ubiquitination protease system (UPS) is significant in post-transcriptional regulation. In UPS, E3 ligase recognizes the substrate protein and mediates the polyubiquitin chain onto the substrate. Here, we identified a new gene, named Arabidopsis thaliana ABA-related RING-type E3 ligase (AtARRE), which induced by ABA and NaCl. AtARRE encodes a functional RING-type E3 ligase protein localized in nucleus and plasma membrane of Arabidopsis. Physiological analysis demonstrated that mutation of AtARRE (T-DNA insert mutants atarre-1 and atarre-2) caused plants hypersensitivity to ABA, including enhanced stomatal closure, reduced root elongation and seed germination. However, overexpression of AtARRE transgenic lines caused plants hyposensitive to ABA compared with WT and mutant atarre plants. Under the treatment of ABA, the transcript abundances of ABA-responsive genes RD29A, RD29B, RD22 and ABI5 in atarre mutant plants were markedly higher than those of WT and AtARRE overexpression lines. Hence, these results indicate that AtARRE acts as a negative regulator of ABA-mediated stress responses in Arabidopsis.


Assuntos
Ácido Abscísico/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética
5.
Int J Mol Sci ; 19(7)2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30004422

RESUMO

The phytohormone abscisic acid (ABA) regulates plant growth, the developmental process, and abiotic stresses. ABA signaling is induced in response to mediate plant acclimation to environmental challenges, including high salinity and drought. The ABA-binding receptors (RCAR/PYR1/PYL), composing of 14 members, are the core components of the ABA-signaling pathway. Here, we observed that the three subfamilies within the RCARs showed different expression patterns at the basal and exogenous ABA levels. Subsequently, we generated transgenic plants overexpressing subfamily III, RCAR11⁻RCAR14, respectively. The transgenic plants showed increased ABA sensitivity in seed germination and post-germination seedling establishment and root length. Further studies revealed that the overexpressing subfamily III transgenic plants enhanced drought resistance, increased water-use efficiency, and accelerated stress-responsive gene expression compared with the wild-type plants. These findings confirm that the subfamily III plays a key role in ABA-mediated developmental processes and, more importantly, is involved in drought tolerance in the ABA-dependent pathway.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis , Arabidopsis , Germinação/genética , Proteínas de Membrana Transportadoras , Plantas Geneticamente Modificadas , Plântula , Ácido Abscísico/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desidratação , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento
6.
Plant Physiol Biochem ; 195: 144-154, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36638604

RESUMO

Nitrogen (N) is an essential nutrient for plant growth and development. Dioecious plants, especially perennial plants, are often faced with a shortage of N supply in nature. Poplar is one of the most important dioecious and perennials species. Due to the different ecological functions, female and male poplars adopt different adaptation strategies to N limitation. However, the regulation in epigenetic mechanism is poorly understood on sexes. Here, the integrative analysis of whole-genome bisulfite sequencing (WGBS), RNA sequencing, and plant physiological analysis on female and male Populus cathayana were performed. We found that N deficiency reprograms methylation in both sexes, and the CG and CHH methylation types played critical roles in female and male poplars, respectively. Induced by DNA methylation, N-deficient males had a stronger phenylpropanoid synthesis pathway and less anthocyanin accumulation than females, which not only strengthened the N cycle but also reduced the defense cost of males. In addition, compared with male poplars, females accumulated more starch to expend excess energy under N limited condition. Additionally, DNA methylation also mediated hormone signalling involved in anthocyanin synthesis and starch metabolism. Therefore, our study reveals new molecular evidences that male poplars are more tolerant to N deficiency than females, which provides a reference for ecological adaptability of forest trees.


Assuntos
Nitrogênio , Populus , Nitrogênio/metabolismo , Metilação de DNA/genética , Populus/metabolismo , Antocianinas/metabolismo , Metabolismo dos Carboidratos
7.
J Plant Physiol ; 285: 153978, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37087999

RESUMO

As a regulator of actin filament turnover, Arabidopsis thaliana CAP1 plays an important role in plant growth and development. Here, we analyzed the phenotypes of two Arabidopsis cap1 mutants: cap1-1 (a T-DNA insertion mutant) and Cas9-CAP1 (generated by CRISPR-Cas9 gene editing). Phenotypic analysis demonstrated that loss of CAP1 results in defects in seed germination and seedling morphology, with some seedlings exhibiting one or three cotyledons. The cap1-1 mutant took longer than the wild type to complete its life cycle, but its flowering time was normal, indicating that loss of CAP1 prolongs reproductive but not vegetative growth. Moreover, loss of CAP1 severely reduces seed production in self-pollinated plants, due to disruption of pollen tube elongation. RNA-seq and qRT-PCR analyses demonstrated that CAP1 may be involved in osmotic stress responses. Indeed, the cap1-1 mutant showed increased tolerance of salt and mannitol treatment, indicating that CAP1 plays a negative role in osmotic stress tolerance in Arabidopsis. Taken together, our results demonstrate that CAP1 functions not only in plant growth and development, but also in Arabidopsis responses to osmotic stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pressão Osmótica/fisiologia , Cloreto de Sódio/metabolismo , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo
8.
Plant Commun ; 3(1): 100266, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35059632

RESUMO

Lysine acetylation (LysAc) is a conserved and important post-translational modification (PTM) that plays a key role in plant physiological and metabolic processes. Based on advances in Lys-acetylated protein immunoenrichment and mass-spectrometric technology, LysAc proteomics studies have been performed in many species. Such studies have made substantial contributions to our understanding of plant LysAc, revealing that Lys-acetylated histones and nonhistones are involved in a broad spectrum of plant cellular processes. Here, we present an extensive overview of recent research on plant Lys-acetylproteomes. We provide in-depth insights into the characteristics of plant LysAc modifications and the mechanisms by which LysAc participates in cellular processes and regulates metabolism and physiology during plant growth and development. First, we summarize the characteristics of LysAc, including the properties of Lys-acetylated sites, the motifs that flank Lys-acetylated lysines, and the dynamic alterations in LysAc among different tissues and developmental stages. We also outline a map of Lys-acetylated proteins in the Calvin-Benson cycle and central carbon metabolism-related pathways. We then introduce some examples of the regulation of plant growth, development, and biotic and abiotic stress responses by LysAc. We discuss the interaction between LysAc and Nα-terminal acetylation and the crosstalk between LysAc and other PTMs, including phosphorylation and succinylation. Finally, we propose recommendations for future studies in the field. We conclude that LysAc of proteins plays an important role in the regulation of the plant life cycle.


Assuntos
Lisina , Proteoma , Acetilação , Lisina/metabolismo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo
9.
Genes (Basel) ; 13(12)2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36553591

RESUMO

The fast-growing arbor poplar is widely distributed across the world and is susceptible to nitrogen availability. The WRKY transcription factor is an important regulatory node of stress tolerance as well as nutrient utilization. However, the potential response mechanism of WRKY genes toward nitrogen is poorly understood. Therefore, the identification of WRKY genes on the Populus trichocarpa genome was performed, and 98 PtWRKYs (i.e., PtWRKY1 to PtWRKY98) were identified. Phylogenetic analysis and the promoter cis-acting element detection revealed that PtWRKYs have multiple functions, including phosphorus and nitrogen homeostasis. By constructing multilayer-hierarchical gene regulatory networks (ML-hGRNs), it was predicted that many WRKY transcription factors were involved in the nitrogen response, such as PtWRKY33 and PtWRKY95. They mainly regulated the expression of primary nitrogen-responsive genes (NRGs), such as PtNRT2.5A, PtNR2 and PtGLT2. The integrative analysis of transcriptome and RT-qPCR results show that the expression levels of 6 and 15 PtWRKYs were regulated by nitrogen availability in roots and leaves, respectively, and those were also found in ML-hGRN. Our study demonstrates that PtWRKYs respond to nitrogen by regulating NRGs, which enriches the nitrate-responsive transcription factor network and helps to uncover the hub of nitrate and its related signaling regulation.


Assuntos
Populus , Populus/genética , Populus/metabolismo , Filogenia , Nitrogênio/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Sci Total Environ ; 844: 157132, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35798115

RESUMO

The adverse effects of drought on plants are gradually exacerbated with global climatic change. Amelioration of the drought stress that is induced by low doses of acetic acid (AA) has been caused great interest in plants. However, whether AA can change soil microbial composition is still unknown. Here, we investigated how exogenous AA regulates the physiology, rhizosphere soil microorganisms and metabolic composition on Salix myrtillacea under drought stress. The physiological results showed that AA could improve the drought tolerance of S. myrtillacea. Azotobacter and Pseudomonas were enriched in the rhizosphere by AA irrigation. AA significantly increased the relative contents of amino acid metabolites (e.g., glycyl-L-tyrosine, l-glutamine and seryl-tryptophan) and decreased the relative contents of phenylpropane metabolites (e.g., fraxetin and sinapyl aldehyde) in soils. The enrichments of Azotobacter and Pseudomonas were significantly correlated with glycyl-L-tyrosine, l-glutamine, seryl-tryptophan, fraxetin and sinapyl aldehyde, which could increase the stress resistance by promoting nitrogen (N) uptake for willows. Furthermore, inoculation with Azotobacter chroococcum and Pseudomonas fluorescens could significantly improve willows drought tolerance. Therefore, our results reveal that the changes of plant physiology, rhizosphere soil microorganisms and metabolic composition induced by AA can improve willows drought resistance by enhancing N uptake.


Assuntos
Rizosfera , Salix , Ácido Acético , Secas , Glutamina , Raízes de Plantas , Plantas , Solo/química , Microbiologia do Solo , Triptofano
11.
Plant Signal Behav ; 14(12): 1670596, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552801

RESUMO

Plants growing in natural habitats have evolved a wide range of mechanisms to copy with environmental challenging, including biotic and abiotic stresses. Abiotic stresses-induced increases in Abscisic acid (ABA) levels in plants suffering from stresses, including drought, cold or heat stress. To explore the function of the core components in ABA signaling, we used the overexpression of RCARs transgenic plants to expose in heat or cold stress. In this study, overexpression of RCAR12 or RCAR13 (R12-OE or R13-OE) transgenic plants had higher germination and survival rate than the wild-type (WT) Arabidopsis, indicating that they are both positively responsive to the high temperature. And the heat shock genes HSP18.2 and HSP70 were significantly induced by RCAR12 or RCAR13. Further, the results inferred that the over-expression of RCAR12 or RCAR13 could tolerance the cold stress, through induction CBFs expressions, the cold-responsive genes when plants were challenged the cold tress. And when complementation of RCAR12 to the 1124 mutant (R12:1124), the results indicated that RCAR12 could recover the insensitivity of 1124 to heat and cold stresses. Hence, we propose that RCAR12 and RCAR13, the ABA receptors, may play the positive roles in regulating the extreme temperature, including cold and high temperature in Arabidopsis.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Temperatura Baixa , Temperatura Alta , Receptores de Superfície Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas , Plântula/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA