Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
EMBO J ; 42(4): e111883, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546550

RESUMO

Proper stamen filament elongation is essential for pollination and plant reproduction. Plant hormones are extensively involved in every stage of stamen development; however, the cellular mechanisms by which phytohormone signals couple with microtubule dynamics to control filament elongation remain unclear. Here, we screened a series of Arabidopsis thaliana mutants showing different microtubule defects and revealed that only those unable to sever microtubules, lue1 and ktn80.1234, displayed differential floral organ elongation with less elongated stamen filaments. Prompted by short stamen filaments and severe decrease in KTN1 and KTN80s expression in qui-2 lacking five BZR1-family transcription factors (BFTFs), we investigated the crosstalk between microtubule severing and brassinosteroid (BR) signaling. The BFTFs transcriptionally activate katanin-encoding genes, and the microtubule-severing frequency was severely reduced in qui-2. Taken together, our findings reveal how BRs can regulate cytoskeletal dynamics to coordinate the proper development of reproductive organs.


Assuntos
Brassinosteroides , Katanina , Microtúbulos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
2.
Mol Cell ; 67(4): 702-710.e4, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28757206

RESUMO

Methylation and nitric oxide (NO)-based S-nitrosylation are highly conserved protein posttranslational modifications that regulate diverse biological processes. In higher eukaryotes, PRMT5 catalyzes Arg symmetric dimethylation, including key components of the spliceosome. The Arabidopsis prmt5 mutant shows severe developmental defects and impaired stress responses. However, little is known about the mechanisms regulating the PRMT5 activity. Here, we report that NO positively regulates the PRMT5 activity through S-nitrosylation at Cys-125 during stress responses. In prmt5-1 plants, a PRMT5C125S transgene, carrying a non-nitrosylatable mutation at Cys-125, fully rescues the developmental defects, but not the stress hypersensitive phenotype and the responsiveness to NO during stress responses. Moreover, the salt-induced Arg symmetric dimethylation is abolished in PRMT5C125S/prmt5-1 plants, correlated to aberrant splicing of pre-mRNA derived from a stress-related gene. These findings define a mechanism by which plants transduce stress-triggered NO signal to protein methylation machinery through S-nitrosylation of PRMT5 in response to environmental alterations.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Óxido Nítrico/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cisteína , Regulação da Expressão Gênica de Plantas , Metilação , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteômica/métodos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transdução de Sinais
3.
New Phytol ; 243(5): 2021-2036, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014531

RESUMO

Phytohormones possess unique chemical structures, and their physiological effects are regulated through intricate interactions or crosstalk among multiple phytohormones. MALDI-MSI enables the simultaneous detection and imaging of multiple hormones. However, its application for tracing phytohormones is currently restricted by low abundance of hormone in plant and suboptimal matrix selection. 2,4-Dihydroxy-5-nitrobenzoic acid (DHNBA) was reported as a new MALDI matrix for the enhanced detection and imaging of multiple phytohormones in plant tissues. DHNBA demonstrates remarkable sensitivity improvement when compared to the commonly used matrix, 2,5-dihydroxybenzoic acid (DHB), in the detection of isoprenoid cytokinins (trans-zeatin (tZ), dihy-drozeatin (DHZ), meta-topolin (mT), and N6-(Δ2-isopentenyl) adenine (iP)), jasmonic acid (JA), abscisic acid (ABA), and 1-aminocyclo-propane-1-carboxylic acid (ACC) standards. The distinctive properties of DHNBA (i.e. robust UV absorption, uniform matrix deposition, negligible background interference, and high ionization efficiency of phytohormones) make it as an ideal matrix for enhanced detection and imaging of phytohormones, including tZ, DHZ, ABA, indole-3-acetic acid (IAA), and ACC, by MALDI-MSI in various plant tissues, for example germinating seeds, primary/lateral roots, and nodules. Employing DHNBA significantly enhances our capability to concurrently track complex phytohormone biosynthesis pathways while providing precise differentiation of the specific roles played by individual phytohormones within the same category. This will propel forward the comprehensive exploration of phytohormonal functions in plant science.


Assuntos
Reguladores de Crescimento de Plantas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Gentisatos/metabolismo , Gentisatos/química
4.
Plant Physiol ; 191(1): 280-298, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36102807

RESUMO

Plant height and tiller number are two major factors determining plant architecture and yield. However, in rice (Oryza sativa), the regulatory mechanism of plant architecture remains to be elucidated. Here, we reported a recessive rice mutant presenting dwarf and reduced tillering phenotypes (drt1). Map-based cloning revealed that the phenotypes are caused by a single point mutation in DRT1, which encodes the Class I formin protein O. sativa formin homolog 13 (OsFH13), binds with F-actin, and promotes actin polymerization for microfilament organization. DRT1 protein localized on the plasma membrane (PM) and chloroplast (CP) outer envelope. DRT1 interacted with rice phototropin 2 (OsPHOT2), and the interaction was interrupted in drt1. Upon blue light stimulus, PM localized DRT1 and OsPHOT2 were translocated onto the CP membrane. Moreover, deficiency of DRT1 reduced OsPHOT2 internalization and OsPHOT2-mediated CP relocation. Our study suggests that rice formin protein DRT1/OsFH13 is necessary for plant morphology and CP relocation by modulating the actin-associated cytoskeleton network.


Assuntos
Actinas , Oryza , Actinas/metabolismo , Oryza/metabolismo , Forminas/genética , Forminas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Mutação/genética , Regulação da Expressão Gênica de Plantas
5.
Plant Cell Environ ; 47(6): 1941-1956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38369767

RESUMO

While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.


Assuntos
Glycine max , Indóis , Raízes de Plantas , Estresse Salino , Streptomyces , Glycine max/fisiologia , Glycine max/microbiologia , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Streptomyces/fisiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Indóis/metabolismo , Tolerância ao Sal , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
6.
Environ Microbiol ; 25(3): 738-750, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36537236

RESUMO

Verticillium dahliae is a devastating pathogenic fungus that causes severe vascular wilts in more than 400 dicotyledonous plants. The conidiation of V. dahliae in plant vascular tissues is the key strategy for its adaptation to the nutrient-poor environment and is required for its pathogenicity. However, it remains unclear about the regulatory mechanism of conidium production of V. dahliae in vascular tissues. Here, we found that VdAsp1, encoding an inositol polyphosphate kinase, is indispensable for the pathogenicity of V. dahliae. Loss of VdAsp1 function does not affect the invasion of the host, but it impairs the colonization and proliferation in vascular tissues. The ΔVdAsp1 mutant shows defective initiation of conidiophore formation and reduced expression of genes associated with the central developmental pathway. By live-cell imaging, we observed that some of ΔVdAsp1 mutant hyphae are swollen, and microtubule arrangements at the apical region of these hyphae are disorganized. These results indicate that VdAsp1 regulates the transition from vegetative growth to asexual reproduction by modulating microtubule dynamic organization, which is essential for V. dahliae to colonize and proliferate in vascular tissues. These findings provided a potential new direction in the control of vascular wilt pathogen by targeting conidium production in vascular tissues.


Assuntos
Ascomicetos , Verticillium , Proteínas Fúngicas/genética , Verticillium/genética , Ascomicetos/metabolismo , Plantas/microbiologia , Esporos Fúngicos/metabolismo , Reprodução Assexuada , Doenças das Plantas/microbiologia
7.
Plant J ; 104(4): 1105-1116, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32891072

RESUMO

Root nutation indicates the behavior that roots grow in a waving and skewing way due to unequal growth rates on different sides. Although a few developmental and environmental factors have been reported, genetic pathways mediating this process are obscure. We report here that the Arabidopsis CrRLK1L family member FERONIA (FER) is critical for root nutation. Functional loss of FER resulted in enhanced root waviness on tilted plates or roots forming anti-clockwise coils on horizontal plates. Suppressing polar auxin transport, either by pharmacological treatment or by introducing mutations at PIN-FORMED2 (PIN2) or AUXIN RESISTANT1 (AUX1), suppressed the asymmetric root growth (ARG) in fer-4, a null mutant of FER, indicating that FER suppression of ARG depends on polar auxin transport. We further showed by pharmacological treatments that dynamic microtubule organization and Ca2+ signaling are both critical for FER-mediated ARG. Results presented here demonstrate a key role of FER in mediating root nutating growth, through PIN2- and AUX1-mediated auxin transport, through dynamic microtubule organization, and through Ca2+ signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Fosfotransferases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Transporte Biológico , Sinalização do Cálcio , Microtúbulos/metabolismo , Mutação , Fosfotransferases/genética
8.
EMBO J ; 36(23): 3435-3447, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978669

RESUMO

The microtubule (MT)-severing enzyme katanin triggers dynamic reorientation of cortical MT arrays that play crucial functions during plant cell morphogenesis, such as cell elongation, cell wall biosynthesis, and hormonal signaling. MT severing specifically occurs at crossover or branching nucleation sites in living Arabidopsis cells. This differs from the random severing observed along the entire length of single MTs in vitro and strongly suggests that a precise control mechanism must exist in vivo However, how katanin senses and cleaves at MT crossover and branching nucleation sites in vivo has remained unknown. Here, we show that the katanin p80 subunit KTN80 confers precision to MT severing by specific targeting of the katanin p60 subunit KTN1 to MT cleavage sites and that KTN1 is required for oligomerization of functional KTN80-KTN1 complexes that catalyze severing. Moreover, our findings suggest that the katanin complex in Arabidopsis is composed of a hexamer of KTN1-KTN80 heterodimers that sense MT geometry to confer precise MT severing. Our findings shed light on the precise control mechanism of MT severing in plant cells, which may be relevant for other eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Katanina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Genes de Plantas , Katanina/química , Katanina/genética , Microtúbulos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Plantas Geneticamente Modificadas , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
9.
Environ Microbiol ; 23(4): 1991-2003, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33185953

RESUMO

The soil-borne ascomycete Verticillium dahliae causes wilt disease in more than two hundred dicotyledonous plants including the economically important crop cotton, and results in a severe reduction in cotton fiber yield and quality. During infection, V. dahliae secretes numerous secondary metabolites, which act as toxic factors to promote the infection process. However, the mechanism underlying how V. dahliae secondary metabolites regulate cotton infection remains largely unexplored. In this study, we report that VdBre1, an ubiquitin ligase (E3) enzyme to modify H2B, regulates radial growth and conidia production of V. dahliae. The VdBre1 deletion strains show nonpathogenic symptoms on cotton, and microscopic inspection and penetration assay indicated that penetration ability of the ∆VdBre1 strain was dramatically reduced. RNA-seq revealed that a total of 1643 differentially expressed genes between the ∆VdBre1 strain and the wild type strain V592, among which genes related to lipid metabolism were significantly overrepresented. Remarkably, the volume of lipid droplets in the ∆VdBre1 conidia was shown to be smaller than that of wild-type strains. Further metabolomics analysis revealed that the pathways of lipid metabolism and secondary metabolites, such as steroid biosynthesis and metabolism of terpenoids and polyketides, have dramatically changed in the ∆VdBre1 metabolome. Taken together, these results indicate that VdBre1 plays crucial roles in cotton infection and pathogenecity, by globally regulating lipid metabolism and secondary metabolism of V. dahliae.


Assuntos
Verticillium , Ascomicetos , Resistência à Doença , Gossypium , Metabolismo dos Lipídeos , Doenças das Plantas , Proteínas de Plantas/metabolismo , Verticillium/genética , Verticillium/metabolismo
10.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809404

RESUMO

Dynamic remodeling of the actin cytoskeleton plays a central role in the elongation of cotton fibers, which are the most important natural fibers in the global textile industry. Here, a high-resolution mapping approach combined with comparative sequencing and a transgenic method revealed that a G65V substitution in the cotton actin Gh_D04G0865 (GhACT17D in the wild-type) is responsible for the Gossypium hirsutum Ligon lintless-1 (Li1) mutant (GhACT17DM). In the mutant GhACT17DM from Li1 plant, Gly65 is substituted with valine on the lip of the nucleotide-binding domain of GhACT17D, which probably affects the polymerization of F-actin. Over-expression of GhACT17DM, but not GhACT17D, driven by either a CaMV35 promoter or a fiber-specific promoter in cotton produced a Li1-like phenotype. Compared with the wild-type control, actin filaments in Li1 fibers showed higher growth and shrinkage rates, decreased filament skewness and parallelness, and increased filament density. Taken together, our results indicate that the incorporation of GhACT17DM during actin polymerization disrupts the establishment and dynamics of the actin cytoskeleton, resulting in defective fiber elongation and the overall dwarf and twisted phenotype of the Li1 mutant.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/genética , Fibra de Algodão , Gossypium/genética , Mutação/genética , Actinas/química , Sequência de Aminoácidos , Sequência Conservada , Estudos de Associação Genética , Gossypium/crescimento & desenvolvimento , Fenótipo , Mapeamento Físico do Cromossomo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Homologia Estrutural de Proteína
11.
New Phytol ; 221(2): 1049-1059, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30156704

RESUMO

In plants, the actin cytoskeleton plays a central role in regulating intracellular transport and trafficking in the endomembrane system. Work in legumes suggested that during nodulation, the actin cytoskeleton coordinates numerous cellular processes in the development of nitrogen-fixing nodules. However, we lacked live-cell visualizations demonstrating dynamic remodeling of the actin cytoskeleton during infection droplet release and symbiosome development. Here, we generated transgenic Medicago truncatula lines stably expressing the fluorescent actin marker ABD2-GFP, and utilized live-cell imaging to reveal the architecture and dynamics of the actin cytoskeleton during nodule development. Live-cell observations showed that different zones in nitrogen-fixing nodules exhibit distinct actin architectures and infected cells display five characteristic actin architectures during nodule development. Live-cell imaging combined with three-dimensional reconstruction demonstrated that dense filamentous-actin (F-actin) arrays channel the elongation of infection threads and the release of infection droplets, an F-actin network encircles freshly-released rhizobia, and short F-actin fragments and actin dots around radially distributed symbiosomes. Our findings suggest an important role of the actin cytoskeleton in infection droplet release, symbiosome development and maturation, and provide significant insight into the cellular mechanisms underlying nodule development and nitrogen fixation during legume-rhizobia interactions.


Assuntos
Citoesqueleto de Actina/metabolismo , Medicago truncatula/genética , Sinorhizobium meliloti/fisiologia , Simbiose , Actinas/metabolismo , Genes Reporter , Medicago truncatula/microbiologia , Fixação de Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação , Plantas Geneticamente Modificadas , Nódulos Radiculares de Plantas/microbiologia
12.
J Exp Bot ; 70(12): 3035-3041, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30882862

RESUMO

Microtubule-dependent microtubule nucleation occurs on the lateral surface of pre-existing microtubules and provides a highly efficient means of amplifying their populations and reorganizing their architectures. The γ­tubulin ring complex serves as the template to initiate nascent microtubule polymerization. Augmin, a hetero-octameric protein complex, acts as a recruiting factor to target the γ­tubulin ring complex to pre-existing microtubules and trigger new microtubule growth. Although microtubule-dependent microtubule nucleation has been extensively studied in both animal and plant cells, it remains unclear how the augmin complex assembles in plant cells, especially in cell-cycle-specific and cell-type-specific manners, and how its spatial structure orchestrates the nucleation geometry. In this review, we summarize the advances in knowledge of augmin-dependent microtubule nucleation and the regulation of its geometry, and highlight recent findings and emerging questions concerning the role of the augmin complex in establishing microtubule arrays and the cell-cycle-specific composition of augmin in plant cells.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Ciclo Celular
13.
PLoS Genet ; 12(10): e1006266, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27768706

RESUMO

How cell shape is controlled is a fundamental question in developmental biology, but the genetic and molecular mechanisms that determine cell shape are largely unknown. Arabidopsis trichomes have been used as a good model system to investigate cell shape at the single-cell level. Here we describe the trichome cell shape 1 (tcs1) mutants with the reduced trichome branch number in Arabidopsis. TCS1 encodes a coiled-coil domain-containing protein. Pharmacological analyses and observations of microtubule dynamics show that TCS1 influences the stability of microtubules. Biochemical analyses and live-cell imaging indicate that TCS1 binds to microtubules and promotes the assembly of microtubules. Further results reveal that TCS1 physically associates with KCBP/ZWICHEL, a microtubule motor involved in the regulation of trichome branch number. Genetic analyses indicate that kcbp/zwi is epistatic to tcs1 with respect to trichome branch number. Thus, our findings define a novel genetic and molecular mechanism by which TCS1 interacts with KCBP to regulate trichome cell shape by influencing the stability of microtubules.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a Calmodulina/genética , Forma Celular/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Proteínas Associadas aos Microtúbulos , Microtúbulos/genética , Microtúbulos/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Ligação Proteica , Plântula/genética , Plântula/crescimento & desenvolvimento , Tricomas/genética , Tricomas/crescimento & desenvolvimento , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(40): 11348-11353, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647923

RESUMO

Cellulose, often touted as the most abundant biopolymer on Earth, is a critical component of the plant cell wall and is synthesized by plasma membrane-spanning cellulose synthase (CESA) enzymes, which in plants are organized into rosette-like CESA complexes (CSCs). Plants construct two types of cell walls, primary cell walls (PCWs) and secondary cell walls (SCWs), which differ in composition, structure, and purpose. Cellulose in PCWs and SCWs is chemically identical but has different physical characteristics. During PCW synthesis, multiple dispersed CSCs move along a shared linear track in opposing directions while synthesizing cellulose microfibrils with low aggregation. In contrast, during SCW synthesis, we observed swaths of densely arranged CSCs that moved in the same direction along tracks while synthesizing cellulose microfibrils that became highly aggregated. Our data support a model in which distinct spatiotemporal features of active CSCs during PCW and SCW synthesis contribute to the formation of cellulose with distinct structure and organization in PCWs and SCWs of Arabidopsis thaliana This study provides a foundation for understanding differences in the formation, structure, and organization of cellulose in PCWs and SCWs.


Assuntos
Parede Celular/enzimologia , Celulose/biossíntese , Glucosiltransferases/genética , Complexos Multiproteicos/química , Arabidopsis/enzimologia , Arabidopsis/genética , Membrana Celular/química , Membrana Celular/enzimologia , Parede Celular/genética , Celulose/química , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/química , Microfibrilas/química , Microfibrilas/genética , Complexos Multiproteicos/genética
15.
J Integr Plant Biol ; 61(4): 388-393, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30226291

RESUMO

Numerous fluorescent marker lines are currently available to visualize microtubule (MT) architecture and dynamics in living plant cells, such as markers expressing p35S::GFP-MBD or p35S::GFP-TUB6. However, these MT marker lines display obvious defects that affect plant growth or produce unstable fluorescent signals. Here, a series of new marker lines were developed, including the pTUB6::VisGreen-TUB6-expressing line in which TUB6 is under the control of its endogenous regulatory elements and eGFP is replaced with VisGreen, a brighter fluorescent protein. Moreover, two different markers were combined into one expression vector and developed two dual-marker lines. These marker lines produce bright, stable fluorescent signals in various tissues, and greatly shorten the screening process for generating dual-marker lines. These new marker lines provide a novel resource for MT research.


Assuntos
Microtúbulos/metabolismo , Células Vegetais/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Biomarcadores/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Plantas Geneticamente Modificadas
16.
Environ Microbiol ; 20(4): 1607-1621, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29575486

RESUMO

The vascular wilt fungus Verticillium dahliae is one of the most destructive pathogens of cotton (Gossypium hirsutum) and many other economically important dicot plants. Fungal pathogens require Myosin-mediated actomyosin motility system for colonization of their host plants; however, the mechanisms underlying this process have not been fully characterized for V. dahliae. Here, in a knock-out experiment, we characterized the role of VdMyo5, a member of the Myosin V family, before and during infection of cotton and Arabidopsis thaliana. The VdMyo5 deletion mutant (ΔVdmyo5) fungi showed obvious defects in the development of conidia and the polarized elongation of vegetative hyphae, but no inhibition of host root penetration. Overall, the ΔVdmyo5 fungi exhibited dramatically reduced virulence in cotton and Arabidopsis, with almost no colonization in sections of host vascular tissue. We found labelled Myosin5-GFP to be specifically enriched at the hyphal tip, co-localized with FM4-64 labelled Spitzenkörper, which is the vesicle supply centre in filamentous fungi. Comparative secretome analysis revealed that proteins associated with cell wall modification and degradation of reactive oxygen species were significantly altered in mutant strains. Our results indicate that Myosin5 is required for vegetative growth and full virulence, possibly by regulating vesicle transport. The findings provide important insight into the cellular mechanisms of Verticillium pathogenesis.


Assuntos
Actomiosina/metabolismo , Arabidopsis/microbiologia , Gossypium/microbiologia , Miosina Tipo V/metabolismo , Doenças das Plantas/microbiologia , Verticillium/patogenicidade , Técnicas de Inativação de Genes , Hifas/crescimento & desenvolvimento , Miosina Tipo V/genética , Raízes de Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Verticillium/genética , Verticillium/metabolismo , Virulência/genética
17.
New Phytol ; 218(1): 298-309, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29281751

RESUMO

Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Alelos , Sequência de Bases , Morte Celular , Inativação Gênica , Loci Gênicos , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Folhas de Planta/citologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Domínios Proteicos , Análise de Célula Única , Nicotiana/genética , Transformação Genética , Triticum/imunologia
18.
Plant Physiol ; 174(2): 1151-1166, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28455404

RESUMO

To better understand the molecular mechanisms behind plant growth and leaf senescence in monocot plants, we identified a mutant exhibiting dwarfism and an early-senescence leaf phenotype, termed dwarf and early-senescence leaf1 (del1). Histological analysis showed that the abnormal growth was caused by a reduction in cell number. Further investigation revealed that the decline in cell number in del1 was affected by the cell cycle. Physiological analysis, transmission electron microscopy, and TUNEL assays showed that leaf senescence was triggered by the accumulation of reactive oxygen species. The DEL1 gene was cloned using a map-based approach. It was shown to encode a pectate lyase (PEL) precursor that contains a PelC domain. DEL1 contains all the conserved residues of PEL and has strong similarity with plant PelC. DEL1 is expressed in all tissues but predominantly in elongating tissues. Functional analysis revealed that mutation of DEL1 decreased the total PEL enzymatic activity, increased the degree of methylesterified homogalacturonan, and altered the cell wall composition and structure. In addition, transcriptome assay revealed that a set of cell wall function- and senescence-related gene expression was altered in del1 plants. Our research indicates that DEL1 is involved in both the maintenance of normal cell division and the induction of leaf senescence. These findings reveal a new molecular mechanism for plant growth and leaf senescence mediated by PECTATE LYASE-LIKE genes.


Assuntos
Genes de Plantas , Oryza/enzimologia , Oryza/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/crescimento & desenvolvimento , Polissacarídeo-Liases/genética , Sequência de Aminoácidos , Contagem de Células , Ciclo Celular/genética , Morte Celular/genética , Parede Celular/metabolismo , Clonagem Molecular , Esterificação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Oryza/crescimento & desenvolvimento , Pectinas/metabolismo , Fenótipo , Filogenia , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/genética
19.
Plant Cell ; 27(3): 857-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25747881

RESUMO

Obligate biotrophs, such as the powdery mildew pathogens, deliver effectors to the host cell and obtain nutrients from the infection site. The interface between the plant host and the biotrophic pathogen thus represents a major battleground for plant-pathogen interactions. Increasing evidence shows that cellular trafficking plays an important role in plant immunity. Here, we report that Arabidopsis thaliana ENHANCED DISEASE RESISTANCE4 (EDR4) plays a negative role in resistance to powdery mildew and that the enhanced disease resistance in edr4 mutants requires salicylic acid signaling. EDR4 mainly localizes to the plasma membrane and endosomal compartments. Genetic analyses show that EDR4 and EDR1 function in the same genetic pathway. EDR1 and EDR4 accumulate at the penetration site of powdery mildew infection, and EDR4 physically interacts with EDR1, recruiting EDR1 to the fungal penetration site. In addition, EDR4 interacts with CLATHRIN HEAVY CHAIN2 (CHC2), and edr4 mutants show reduced endocytosis rates. Taken together, our data indicate that EDR4 associates with CHC2 and modulates plant immunity by regulating the relocation of EDR1 in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Cadeias Pesadas de Clatrina/metabolismo , Imunidade Vegetal , Arabidopsis/metabolismo , Ascomicetos/fisiologia , Membrana Celular/metabolismo , Resistência à Doença , Endocitose , Endossomos/metabolismo , Genes Supressores , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Ligação Proteica , Transporte Proteico , Ácido Salicílico/metabolismo , Transdução de Sinais
20.
Plant Cell ; 25(11): 4421-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24220634

RESUMO

LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpression of WLIM1a in cotton led to significant changes in fiber length and secondary wall structure. Compared with the wild type, fibers of WLIM1a-overexpressing plants grew longer and formed a thinner and more compact secondary cell wall, which contributed to improved fiber strength and fineness. Functional studies demonstrated that (1) WLIM1a acts as an actin bundler to facilitate elongation of fiber cells and (2) WLIM1a also functions as a transcription factor to activate expression of Phe ammonia lyase-box genes involved in phenylpropanoid biosynthesis to build up the secondary cell wall. WLIM1a localizes in the cytosol and nucleus and moves into the nucleus in response to hydrogen peroxide. Taken together, these results demonstrate that WLIM1a has dual roles in cotton fiber development, elongation, and secondary wall formation. Moreover, our study shows that lignin/lignin-like phenolics may substantially affect cotton fiber quality; this finding may guide cotton breeding for improved fiber traits.


Assuntos
Parede Celular/metabolismo , Fibra de Algodão , Gossypium/citologia , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Actinas/metabolismo , Núcleo Celular/metabolismo , Parede Celular/genética , Parede Celular/ultraestrutura , Clonagem Molecular , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/efeitos dos fármacos , Gossypium/genética , Peróxido de Hidrogênio/farmacologia , Lignina/metabolismo , Filogenia , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA