Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 20(5): 2051-2057, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30908038

RESUMO

Supercritical drying is widely considered as the gold standard to produce aerogels that preserve the microstructure of the gels, but we have found this is not always the case. Chitosan aerogel, one of the emerging biopolymer aerogels, was prepared by chemical cross-linking gelation, followed by solvent exchange with methanol and supercritical drying using CO2. Small-angle X-ray scattering analysis shows that the structure of the wet gel, which consists of Gaussian chains of individual molecular strands, converts into a nanofibrous network during CO2 processing. In situ observation reveals a drastic shrinkage of the gel in CO2, demonstrating that physical coagulation caused by the low affinity between chitosan and CO2 is the main structure-forming step. These results challenge the common perception of supercritical drying: it is no longer an inactive drying method, but rather an active nanostructure forming a tool to produce porous biopolymer materials with tailored structure and properties.


Assuntos
Dióxido de Carbono/química , Quitosana/análogos & derivados , Hidrogéis/química , Nanofibras/química , Dessecação/métodos , Transição de Fase , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Biomacromolecules ; 18(7): 2172-2178, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28657715

RESUMO

Biobased nanofiber aerogels are ones of the attractive emerging materials in the fields of biochemistry and materials chemistry, but their poor humidity stability due to high hydrophilicity has limited their practical uses. In this paper, a new series of hydrophobic nanofibrous aerogels made from regenerated chitosan and alkyl aldehydes were prepared via a simple one-pot reaction followed by supercritical drying. Hexanal-modified chitosan aerogel shows excellent hydrophobicity with a water contact angle of ∼136°, a low density of 0.04-0.07 g cm-3, and structurally homogeneous three-dimensional nanofiber network at the nanoscale. Systematic investigations using various alkyl aldehydes revealed that pentanal-modified aerogel has similar high hydrophobicity and low density compared to the hexanal-modified material, while heptanal- and octanal-modified aerogels show drastic shrinkage during gelation. The aldehyde modification also suppresses permeation of water droplets into aerogel monoliths as well as reducing shrinkage under high humidity conditions.


Assuntos
Aldeídos/química , Quitosana/química , Nanofibras/química , Géis , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA