RESUMO
PURPOSE: External loading of osteoarthritic and healthy knees correlates with current and future osteochondral tissue state. These relationships have not been examined following anterior cruciate ligament reconstruction. We hypothesised greater magnitude tibiofemoral contact forces were related to increased prevalence of osteochondral pathologies, and these relationships were exacerbated by concomitant meniscal injury. METHODS: This was a cross-sectional study of 100 individuals (29.7 ± 6.5 years, 78.1 ± 14.4 kg) examined 2-3 years following hamstring tendon anterior cruciate ligament reconstruction. Thirty-eight participants had concurrent meniscal pathology (30.6 ± 6.6 years, 83.3 ± 14.3 kg), which included treated and untreated meniscal injury, and 62 participants (29.8 ± 6.4 years, 74.9 ± 13.3 kg) were free of meniscal pathology. Magnetic resonance imaging of reconstructed knees was used to assess prevalence of tibiofemoral osteochondral pathologies (i.e., cartilage defects and bone marrow lesions). A calibrated electromyogram-driven neuromusculoskeletal model was used to predict medial and lateral tibiofemoral compartment contact forces from gait analysis data. Relationships between contact forces and osteochondral pathology prevalence were assessed using logistic regression models. RESULTS: In patients with reconstructed knees free from meniscal pathology, greater medial contact forces were related to reduced prevalence of medial cartilage defects (odds ratio (OR) = 0.7, Wald χ2(2) = 7.9, 95% confidence interval (CI) = 0.50-95, p = 0.02) and medial bone marrow lesions (OR = 0.8, Wald χ2(2) = 4.2, 95% CI = 0.7-0.99, p = 0.04). No significant relationships were found in lateral compartments. In reconstructed knees with concurrent meniscal pathology, no relationships were found between contact forces and osteochondral pathologies. CONCLUSIONS: In patients with reconstructed knees free from meniscal pathology, increased contact forces were associated with fewer cartilage defects and bone marrow lesions in medial, but not, lateral tibiofemoral compartments. No significant relationships were found between contact forces and osteochondral pathologies in reconstructed knees with meniscal pathology for any tibiofemoral compartment. Future studies should focus on determining longitudinal effects of contact forces and changes in osteochondral pathologies. LEVEL OF EVIDENCE: IV.
Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior , Osteonecrose/epidemiologia , Adulto , Fenômenos Biomecânicos/fisiologia , Medula Óssea/fisiopatologia , Estudos Transversais , Feminino , Marcha/fisiologia , Humanos , Traumatismos do Joelho/cirurgia , Modelos Logísticos , Imageamento por Ressonância Magnética , Masculino , Osteonecrose/patologia , Prevalência , Lesões do Menisco Tibial/cirurgia , Vitória/epidemiologia , Adulto JovemRESUMO
Knee osteoarthritis is a major cause of pain and disability in the elderly population with many daily living activities being difficult to perform as a result of this disease. The present study aimed to estimate the knee adduction moment and tibiofemoral joint contact force during daily living activities using a musculoskeletal model with inertial motion capture derived kinematics in an elderly population. Eight elderly participants were instrumented with 17 inertial measurement units, as well as 53 opto-reflective markers affixed to anatomical landmarks. Participants performed stair ascent, stair descent, and sit-to-stand movements while both motion capture methods were synchronously recorded. A musculoskeletal model containing 39 degrees-of-freedom was used to estimate the knee adduction moment and tibiofemoral joint contact force. Strong to excellent Pearson correlation coefficients were found for the IMC-derived kinematics across the daily living tasks with root mean square errors (RMSE) between 3° and 7°. Furthermore, moderate to strong Pearson correlation coefficients were found in the knee adduction moment and tibiofemoral joint contact forces with RMSE between 0.006â»0.014 body weight × body height and 0.4 to 1 body weights, respectively. These findings demonstrate that inertial motion capture may be used to estimate knee adduction moments and tibiofemoral contact forces with comparable accuracy to optical motion capture.
Assuntos
Técnicas Biossensoriais , Articulação do Joelho/fisiopatologia , Músculo Esquelético/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Atividades Cotidianas , Idoso , Feminino , Fêmur/fisiopatologia , Marcha/fisiologia , Humanos , Masculino , Fenômenos Mecânicos , Pessoa de Meia-Idade , Movimento/fisiologia , Osteoartrite do Joelho/reabilitação , Osteoartrite do Joelho/terapia , Tíbia/fisiopatologiaRESUMO
BACKGROUND: Gait retraining interventions using real-time biofeedback have been proposed to alter the loading across the knee joint in patients with knee osteoarthritis. Despite the demonstrated benefits of these conservative treatments, their clinical adoption is currently obstructed by the high complexity, spatial demands, and cost of optical motion capture systems. In this study we propose and evaluate a wearable visual feedback system for gait retraining of the foot progression angle (FPA). METHODS: The primary components of the system are inertial measurement units, which track the human movement without spatial limitations, and an augmented reality headset used to project the visual feedback in the visual field. The adapted gait protocol contained five different target angles ranging from 15 degrees toe-out to 5 degrees toe-in. Eleven healthy participants walked on an instrumented treadmill, and the protocol was performed using both an established laboratory visual feedback driven by optical motion capture, and the proposed wearable system. RESULTS AND CONCLUSIONS: The wearable system tracked FPA with an accuracy of 2.4 degrees RMS and ICC=0.94 across all target angles and subjects, when compared to an optical motion capture reference. In addition, the effectiveness of the biofeedback, reflected by the number of steps with FPA value ±2 degrees from the target, was found to be around 50% in both wearable and laboratory approaches. These findings demonstrate that retraining of the FPA using wearable inertial sensing and visual feedback is feasible with effectiveness matching closely an established laboratory method. The proposed wearable setup may reduce the complexity of gait retraining applications and facilitate their transfer to routine clinical practice.
Assuntos
Retroalimentação Sensorial , Marcha/fisiologia , Realidade Virtual , Dispositivos Eletrônicos Vestíveis , Adulto , Fenômenos Biomecânicos , Feminino , Pé , Humanos , Articulação do Joelho/fisiologia , Masculino , Osteoartrite do Joelho/reabilitação , Caminhada/fisiologiaRESUMO
The purpose of this study was to determine the effect of donor muscle morphology following tendon harvest in anterior cruciate ligament (ACL) reconstruction on muscular support of the tibiofemoral joint during sidestep cutting. Magnetic resonance imaging (MRI) was used to measure peak cross-sectional area (CSA) and volume of the semitendinosus (ST) and gracilis (GR) muscles and tendons (bilaterally) in 18 individuals following ACL reconstruction. Participants performed sidestep cutting tasks in a biomechanics laboratory during which lower-limb electromyography, ground reaction loads, whole-body motions were recorded. An EMG driven neuro-musculoskeletal model was subsequently used to determine force from 34 musculotendinous units of the lower limb and the contribution of the ST and GR to muscular support of the tibiofemoral joint based on a normal muscle-tendon model (Standard model). Then, differences in peak CSA and volume between the ipsilateral/contralateral ST and GR were used to adjust their muscle-tendon parameters in the model followed by a recalibration to determine muscle force for 34 musculotendinous units (Adjusted model). The combined contribution of the donor muscles to muscular support about the medial and lateral compartments were reduced by 52% and 42%, respectively, in the adjusted compared to standard model. While the semimembranosus (SM) increased its contribution to muscular stabilisation about the medial and lateral compartment by 23% and 30%, respectively. This computer simulation study demonstrated the muscles harvested for ACL reconstruction reduced their support of the tibiofemoral joint during sidestep cutting, while the SM may have the potential to partially offset these reductions. This suggests donor muscle impairment could be a factor that contributes to ipsilateral re-injury rates to the ACL following return to sport.
Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Músculos Isquiossurais , Tendões dos Músculos Isquiotibiais , Humanos , Músculos Isquiossurais/diagnóstico por imagem , Músculos Isquiossurais/cirurgia , Ligamento Cruzado Anterior/cirurgia , Simulação por Computador , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiologia , Extremidade Inferior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Lesões do Ligamento Cruzado Anterior/cirurgia , Tendões dos Músculos Isquiotibiais/cirurgiaRESUMO
BACKGROUND: The muscle-tendon properties of the semitendinosus (ST) and gracilis (GR) are substantially altered following tendon harvest for the purpose of anterior cruciate ligament reconstruction (ACLR). This study adopted a musculoskeletal modelling approach to determine how the changes to the ST and GR muscle-tendon properties alter their contribution to medial compartment contact loading within the tibiofemoral joint in post ACLR patients, and the extent to which other muscles compensate under the same external loading conditions during walking, running and sidestep cutting. MATERIALS AND METHODS: Motion capture and electromyography (EMG) data from 16 lower extremity muscles were acquired during walking, running and cutting in 25 participants that had undergone an ACLR using a quadruple (ST+GR) hamstring auto-graft. An EMG-driven musculoskeletal model was used to estimate the medial compartment contact loads during the stance phase of each gait task. An adjusted model was then created by altering muscle-tendon properties for the ST and GR to reflect their reported changes following ACLR. Parameters for the other muscles in the model were calibrated to match the experimental joint moments. RESULTS: The medial compartment contact loads for the standard and adjusted models were similar. The combined contributions of ST and GR to medial compartment contact load in the adjusted model were reduced by 26%, 17% and 17% during walking, running and cutting, respectively. These deficits were balanced by increases in the contribution made by the semimembranosus muscle of 33% and 22% during running and cutting, respectively. CONCLUSION: Alterations to the ST and GR muscle-tendon properties in ACLR patients resulted in reduced contribution to medial compartment contact loads during gait tasks, for which the semimembranosus muscle can compensate.
Assuntos
Lesões do Ligamento Cruzado Anterior/reabilitação , Reconstrução do Ligamento Cruzado Anterior/métodos , Ligamento Cruzado Anterior/cirurgia , Músculo Grácil/transplante , Tendões dos Músculos Isquiotibiais/transplante , Articulação do Joelho/fisiologia , Adaptação Fisiológica , Adulto , Ligamento Cruzado Anterior/patologia , Lesões do Ligamento Cruzado Anterior/patologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Eletromiografia , Feminino , Marcha/fisiologia , Músculo Grácil/lesões , Músculos Isquiossurais/lesões , Músculos Isquiossurais/fisiologia , Músculos Isquiossurais/transplante , Tendões dos Músculos Isquiotibiais/lesões , Humanos , Masculino , Modelos Anatômicos , Corrida/fisiologia , Transplante Autólogo , Caminhada/fisiologiaRESUMO
BACKGROUND: Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. HYPOTHESES: Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. RESULTS: In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R2 = 0.43, ß = 0.62, P = .000; lateral: R2 = 0.19, ß = 0.46, P = .03) and medial thicknesses (R2 = 0.24, ß = 0.48, P = .01). In the overall group of ACL-reconstructed knees, greater contact forces were related to greater lateral cartilage volumes (R2 = 0.08, ß = 0.28, P = .01). In ACL-reconstructed knees with lateral meniscal injury, greater lateral contact forces were related to greater lateral cartilage volumes (R2 = 0.41, ß = 0.64, P = .001) and thicknesses (R2 = 0.20, ß = 0.46, P = .04). CONCLUSION: At 2 to 3 years postsurgery, ACL-reconstructed knees had thinner cartilage compared with healthy knees, and there were no positive relationships between medial contact forces and cartilage morphology. In lateral meniscal-injured reconstructed knees, greater contact forces were related to greater lateral cartilage volumes and thicknesses, although it was unclear whether this was an adaptive response or associated with degeneration. Future clinical studies may seek to establish whether cartilage morphology can be modified through rehabilitation programs targeting contact forces directly in addition to the current rehabilitation foci of restoring passive and dynamic knee range of motion, knee strength, and functional performance.
RESUMO
BACKGROUND: The hamstring tendon graft used in anterior cruciate ligament (ACL) reconstruction has been shown to lead to changes to the semitendinosus and gracilis musculature. HYPOTHESIS: We hypothesized that (1) loss of donor muscle size would significantly correlate with knee muscle strength deficits, (2) loss of donor muscle size would be greater for muscles that do not experience tendon regeneration, and (3) morphological adaptations would also be evident in nondonor knee muscles. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Twenty participants (14 men and 6 women, mean age 29 ± 7 years, mean body mass 82 ± 15 kg) who had undergone an ACL reconstruction with a hamstring tendon graft at least 2 years previously underwent bilateral magnetic resonance imaging and subsequent strength testing. Muscle and tendon volumes, peak cross-sectional areas (CSAs), and lengths were determined for 12 muscles and 6 functional muscle groups of the surgical and contralateral limbs. Peak isokinetic concentric strength was measured in knee flexion/extension and internal/external tibial rotation. RESULTS: Only 35% of the patients showed regeneration of both the semitendinosus and gracilis tendons. The regenerated tendons were longer with larger volume and CSA compared with the contralateral side. Deficits in semitendinosus and gracilis muscle size were greater for muscles in which tendons did not regenerate. In addition, combined hamstring muscles (semitendinosus, semimembranosus, and biceps femoris) and combined medial knee muscles (semitendinosus, semimembranosus, gracilis, vastus medialis, medial gastrocnemius, and sartorius) on the surgical side were reduced in volume by 12% and 10%, respectively. A 7% larger volume was observed in the surgical limb for the biceps femoris muscle and corresponded with a lower internal/external tibial rotation strength ratio. The difference in volume, peak CSA, and length of the semitendinosus and gracilis correlated significantly with the deficit in knee flexion strength, with Pearson correlations of 0.51, 0.57, and 0.61, respectively. CONCLUSION: The muscle-tendon properties of the semitendinosus and gracilis are substantially altered after harvesting, and these alterations may contribute to knee flexor weakness in the surgical limb. These deficits are more pronounced in knees with tendons that do not regenerate and are only partially offset by compensatory hypertrophy of other hamstring muscles.