Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Intensive Care Med ; 22(4): 363-8, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8708177

RESUMO

OBJECTIVE: The triggering capability of both the pressure and flow triggering systems of the Servo 300 ventilator (Siemens-Elema, Sweden) was compared at various levels of positive end-expiratory pressure (PEEP), airway resistance (R(aw)), inspiratory effort and air leak, using a mechanical lung model. DESIGN: The ventilator was connected to a two bellows-in-series-type lung model with various mechanical properties. Lung compliance and chest wall compliance were 0.03 and 0.121/cmH2O, respectively. R(aw) was 5, 20 and 50 cmH2O/l/s. Respiratory rate was 15 breaths/min. To compare the triggering capability of both systems, the sensitivity of pressure and flow triggered pressure support ventilation (PSV) was adjusted to be equal by observing the triggering time at 0 cmH2O PEEP and 16 cmH2O of pressure support (PS) with no air leak. No auto-PEEP was developed. In the measurement of trigger delay, the PS level ranged from 16 to 22 cmH2O to attain a set tidal volume (V(T)) of 470 ml at a R(aw) of 5, 20 and 50 cmH2O/l/s. The PEEP level was then changed from 0, 5 and 10 cmH2O at a PS level of 17 cmH2O and R(aw) of 5 and 20 cmH2O/l/s, and the trigger delay was determined. The effect of various levels of air leak and inspiratory effort on triggering capability was also evaluated. Inspiratory effort during triggering delay was estimated by measurements of pressure differentials of airway pressure (Paw) and driving pressure in the diaphragm bellows (Pdriv) in both systems. MEASUREMENTS AND RESULTS: There were no significant differences in trigger delay between the two triggering systems at the various PEEP and R(aw) levels. At the matched sensitivity level, air leak decreased trigger delay in both systems, and additional PEEP caused auto-cycling. A low inspiratory drive increased trigger delay in the pressure sensing system, while trigger delay was not affected in the flow sensing system. The Paw and Pdriv differentials were lower in flow triggering than in pressure triggering. CONCLUSIONS: With respect to triggering delay, the triggering capabilities of the pressure and flow sensing systems were comparable with and without PEEP and/or high airway resistance at the same sensitivity level, unless low inspiratory drive and air leak were present. In terms of pressure differentials, the flow triggering system may require less inspiratory effort to trigger the ventilator than that of the pressure triggering system with a comparable triggering time. However, this difference may be extremely small.


Assuntos
Pulmão/fisiologia , Respiração com Pressão Positiva/métodos , Ventiladores Mecânicos , Trabalho Respiratório/fisiologia , Modelos Biológicos , Respiração com Pressão Positiva/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA