Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683737

RESUMO

Salmon lice, Lepeophtheirus salmonis (family Caligidae), are ectoparasites that have negatively impacted the salmon aquaculture industry and vulnerable wild salmon populations. Researchers have studied salmon lice to better understand their biology to develop effective control strategies. In this study, we updated the chromosome-level reference genome assembly of the Pacific subspecies of L. salmonis using Hi-C data. The previous version placed contigs/scaffolds using an Atlantic salmon louse genetic map. By utilizing Hi-C data from Pacific salmon lice, we were able to properly assign locations to contigs/scaffolds previously unplaced or misplaced. This resulted in a more accurate genome assembly and a more comprehensive characterization of the sex chromosome unique to females (W). We found evidence that the same ZW-ZZ mechanism is common in both Atlantic and Pacific subspecies of salmon lice using PCR assays. The W chromosome was approximately 800 kb in size, which is ∼30 times smaller than the Z chromosome (24 Mb). The W chromosome contained 61 annotated genes, including 32 protein-coding genes, 27 long noncoding RNA (lncRNA) genes, and 2 pseudogenes. Among these 61 genes, 39 genes shared homology to genes found on other chromosomes, while 20 were unique to the W chromosome. Two genes of interest on the W chromosome, prohibitin-2 and kinase suppressor of ras-2, were previously identified as potential sex-linked markers in the salmon louse. However, we prioritized the 20 unique genes on the W chromosome as sex-determining candidates. This information furthers our understanding of the biology of this ectoparasite and may help in the development of more effective management strategies.


Assuntos
Copépodes , Cromossomos Sexuais , Animais , Copépodes/genética , Cromossomos Sexuais/genética , Feminino , Masculino , Genoma , Mapeamento Cromossômico , Salmão/parasitologia , Salmão/genética
2.
G3 (Bethesda) ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041834

RESUMO

The Fraser River once supported massive salmon returns. However, over the last century, the largest returns have consistently been less than half of the recorded historical maximum. There is substantial interest from surrounding communities and governments to increase salmon returns for both human use and functional ecosystems. To generate resources for this endeavor, we resequenced genomes of Chinook (Oncorhynchus tshawytscha), coho (O. kisutch), and sockeye salmon (O. nerka) from the Fraser River at moderate coverage (∼16x). A total of 954 resequenced genomes were analyzed, with 681 collected specifically for this study from tissues sampled between 1997 and 2021. An additional 273 were collected from previous studies. At the species level, Chinook salmon appeared to have 1.6-2.1x more SNPs than coho or sockeye salmon, respectively. This difference may be attributable to large historical declines of coho and sockeye salmon. At the population level, three Fraser River genetic groups were identified for each species using principal component and admixture analyses, which is consistent with previous research and supports the continued use of these groups in conservation and management efforts. Environmental factors and a migration barrier were identified as major factors influencing the boundaries of these genetic groups. Additionally, 20 potentially adaptive loci were identified among the genetic groups. This information may be valuable in new management and conservation efforts. Furthermore, the resequenced genomes are an important resource for contemporary genomics research on Fraser River salmon and have been made publicly available.

3.
G3 (Bethesda) ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115373

RESUMO

The northern pike Esox lucius is a freshwater fish with low genetic diversity but ecological success throughout the Northern Hemisphere. Here we generate an annotated chromosome-level genome assembly of 941 Mbp in length with 25 chromosome-length scaffolds. We then genotype 47 northern pike from Alaska through New Jersey at a genome-wide scale and characterize a striking decrease in genetic diversity along the sampling range. Individuals west of the North American Continental Divide have substantially higher diversity than those to the east (e.g., Interior Alaska and St. Lawrence River have on average 181K and 64K heterozygous SNPs per individual, or a heterozygous SNP every 5.2 kbp and 14.6 kbp, respectively). Individuals clustered within each population with strong support, with numerous private alleles observed within each population. Evidence for recent population expansion was observed for a Manitoba hatchery and the St. Lawrence population (Tajima's D = -1.07 and -1.30, respectively). Several chromosomes have large regions with elevated diversity, including LG24, which holds amhby, the ancestral sex determining gene. As expected amhby was largely male-specific in Alaska and the Yukon and absent southeast to these populations, but we document some amhby(-) males in Alaska and amhby(+) males in the Columbia River, providing evidence for a patchwork of presence of this system in the western region. These results support the theory that northern pike recolonized North America from refugia in Alaska and expanded following deglaciation from west to east, with probable founder effects resulting in loss of both neutral and functional diversity (e.g., amhby).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA