Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(Supplement_1): 1593-1594, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613503
2.
Faraday Discuss ; 197: 337-351, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28181624

RESUMO

Using a MEMS nanoreactor in combination with a specially designed in situ Transmission Electron Microscope (TEM) holder and gas supply system, we imaged the formation of multiple layers of graphene encapsulating a cobalt nanoparticle, at 1 bar CO : N2 (1 : 1) and 500 °C. The cobalt nanoparticle was imaged live in a TEM during the Boudouard reaction. The in situ/operando TEM studies give insight into the behaviour of the catalyst at the nanometer-scale, under industrially relevant conditions. When switching from Fischer-Tropsch syngas conditions (CO : H2 : N2 1 : 2 : 3 at 1 bar) to CO-rich conditions (CO : N2 1 : 1 at 1 bar), we observed the formation of multi-layered graphene on Co nanoparticles at 500 °C. Due to the high temperature, the surface of the Co nanoparticles facilitated the Boudouard reaction, causing CO dissociation and the formation of layers of graphene. After the formation of the first patches of graphene at the surface of the nanoparticle, more and more layers grew over the course of about 40 minutes. In its final state, around 10 layers of carbon capped the nanoparticle. During this process, the carbon shell caused mechanical stress in the nanoparticle, inducing permanent deformation.

3.
Nature ; 456(7219): 222-5, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19005551

RESUMO

The modern chemical industry uses heterogeneous catalysts in almost every production process. They commonly consist of nanometre-size active components (typically metals or metal oxides) dispersed on a high-surface-area solid support, with performance depending on the catalysts' nanometre-size features and on interactions involving the active components, the support and the reactant and product molecules. To gain insight into the mechanisms of heterogeneous catalysts, which could guide the design of improved or novel catalysts, it is thus necessary to have a detailed characterization of the physicochemical composition of heterogeneous catalysts in their working state at the nanometre scale. Scanning probe microscopy methods have been used to study inorganic catalyst phases at subnanometre resolution, but detailed chemical information of the materials in their working state is often difficult to obtain. By contrast, optical microspectroscopic approaches offer much flexibility for in situ chemical characterization; however, this comes at the expense of limited spatial resolution. A recent development promising high spatial resolution and chemical characterization capabilities is scanning transmission X-ray microscopy, which has been used in a proof-of-principle study to characterize a solid catalyst. Here we show that when adapting a nanoreactor specially designed for high-resolution electron microscopy, scanning transmission X-ray microscopy can be used at atmospheric pressure and up to 350 degrees C to monitor in situ phase changes in a complex iron-based Fisher-Tropsch catalyst and the nature and location of carbon species produced. We expect that our system, which is capable of operating up to 500 degrees C, will open new opportunities for nanometre-resolution imaging of a range of important chemical processes taking place on solids in gaseous or liquid environments.

4.
Nanoscale Adv ; 5(19): 5286-5294, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37767042

RESUMO

We report here the first variable temperature in situ transmission electron microscopy (TEM) study on smaller Pt-Rh nanoparticles (≤24 nm) under vacuum conditions. Well-defined 50 at% Pt/50 at% Rh Pt-Rh solid solution and Rh(core)-Pt(shell) nanoparticles, obtained via colloidal synthesis routes, were investigated between room temperature and 650 °C to elucidate the tendency of elemental mixing/segregation. Key findings are that Pt-Rh nanoparticles <13 nm are stable in a solid solution configuration over the entire studied temperature range, whereas nanoparticles >13 nm tend to segregate upon cooling. Such a cross-over in element distribution with nanoparticle size has not been reported for the Pt-Rh system previously. The results demonstrate the technique's ability to extract valuable information concerning the intricate dynamic processes that take place in the bimetallic Pt-Rh system at the nanoscale, which may be indispensable when optimizing, e.g., the metal composition in catalytically active materials.

6.
Nanoscale Adv ; 2(5): 1850-1853, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36132513

RESUMO

Using a facile one-pot colloidal method, it is now possible to obtain monodisperse Co1-x Re x nanoparticles (NPs), with excellent control of Re stoichiometry for x < 0.15. Re-incorporation in terms of a solid solution stabilizes the ß-Mn polymorph relative to the hcp/ccp variants of cobalt. The NPs are thermally stable up to 300 °C, which may make them attractive as model catalysts.

7.
Nat Commun ; 7: 12440, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27514695

RESUMO

Understanding the atomistic details of how platinum surfaces are oxidized under electrochemical conditions is of importance for many electrochemical devices such as fuel cells and electrolysers. Here we use in situ shell-isolated nanoparticle-enhanced Raman spectroscopy to identify the intermediate stages of the electrochemical oxidation of Pt(111) and Pt(100) single crystals in perchloric acid. Density functional theory calculations were carried out to assist in assigning the experimental Raman bands by simulating the vibrational frequencies of possible intermediates and products. The perchlorate anion is suggested to interact with hydroxyl phase formed on the surface. Peroxo-like and superoxo-like two-dimensional (2D) surface oxides and amorphous 3D α-PtO2 are sequentially formed during the anodic polarization. Our measurements elucidate the process of the electrochemical oxidation of platinum single crystals by providing evidence for the structure-sensitive formation of a 2D platinum-(su)peroxide phase. These results may contribute towards a fundamental understanding of the mechanism of degradation of platinum electrocatalysts.

8.
Nat Commun ; 7: 12363, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27498694

RESUMO

The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2.

10.
ACS Nano ; 4(3): 1723-31, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20184385

RESUMO

Thermal annealing of thin films of CdSe/CdS core/shell quantum dots induces superordering of the nanocrystals and a significant reduction of the interparticle spacing. This results in a drastic enhancement of the quantum yield for charge carrier photogeneration and the charge carrier mobility. The mobile electrons have a mobility as high as 0.1 cm(2)/(V x s), which represents an increase of 4 orders of magnitude over non-annealed QD films and exceeds existing literature data on the electron mobility in CdSe quantum dot films. The lifetime of mobile electrons is longer than that of the exciton. A fraction of the mobile electrons gets trapped at levels below the conduction band of the CdSe nanocrystals. These electrons slowly diffuse over 50-300 nm on longer times up to 20 micros and undergo transfer to a TiO2 substrate. The yield for electron injection in TiO2 from both mobile and trapped electrons is found to be >16%.

11.
Proc Natl Acad Sci U S A ; 104(25): 10441-6, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17563373

RESUMO

The role of external ionic strength in diatom biosilica formation was assessed by monitoring the nanostructural changes in the biosilica of the two marine diatom species Thalassiosira punctigera and Thalassiosira weissflogii that was obtained from cultures grown at two distinct salinities. Using physicochemical methods, we found that at lower salinity the specific surface area, the fractal dimensions, and the size of mesopores present in the biosilica decreased. Diatom biosilica appears to be denser at the lower salinity that was applied. This phenomenon can be explained by assuming aggregation of smaller coalescing silica particles inside the silica deposition vesicle, which would be in line with principles in silica chemistry. Apparently, external ionic strength has an important effect on diatom biosilica formation, making it tempting to propose that uptake of silicic acid and other external ions may take place simultaneously. Uptake and transport of reactants in the proximity of the expanding silica deposition vesicle, by (macro)pinocytosis, are more likely than intracellular stabilization and transport of silica precursors at the high concentrations that are necessary for the formation of the siliceous frustule components.


Assuntos
Diatomáceas/fisiologia , Nanoestruturas/química , Dióxido de Silício/metabolismo , Cloreto de Sódio/metabolismo , Fenômenos Químicos , Físico-Química , Diatomáceas/química , Diatomáceas/crescimento & desenvolvimento , Modelos Biológicos , Nanoestruturas/ultraestrutura , Concentração Osmolar , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA