Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Entropy (Basel) ; 24(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35052112

RESUMO

Tumor hypoxia was discovered a century ago, and the interference of hypoxia with all radiotherapies is well known. Here, we demonstrate the potentially extreme effects of hypoxia heterogeneity on radiotherapy and combination radiochemotherapy. We observe that there is a decrease in hypoxia from tumor periphery to tumor center, due to oxygen diffusion, resulting in a gradient of radiative cell-kill probability, mathematically expressed as a probability gradient of occupied space removal. The radiotherapy-induced break-up of the tumor/TME network is modeled by the physics model of inverse percolation in a shell-like medium, using Monte Carlo simulations. The different shells now have different probabilities of space removal, spanning from higher probability in the periphery to lower probability in the center of the tumor. Mathematical results regarding the variability of the critical percolation concentration show an increase in the critical threshold with the applied increase in the probability of space removal. Such an observation will have an important medical implication: a much larger than expected radiation dose is needed for a tumor breakup enabling successful follow-up chemotherapy. Information on the TME's hypoxia heterogeneity, as shown here with the numerical percolation model, may enable personalized precision radiation oncology therapy.

2.
Entropy (Basel) ; 24(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36010733

RESUMO

Breakdowns of two-zone random networks of the Erdos-Rényi type are investigated. They are used as mathematical models for understanding the incompleteness of the tumor network breakdown under radiochemotherapy, an incompleteness that may result from a tumor's physical and/or chemical heterogeneity. Mathematically, having a reduced node removal probability in the network's inner zone hampers the network's breakdown. The latter is described quantitatively as a function of reduction in the inner zone's removal probability, where the network breakdown is described in terms of the largest remaining clusters and their size distributions. The effects on the efficacy of radiochemotherapy due to the tumor micro-environment (TME)'s chemical make-up, and its heterogeneity, are discussed, with the goal of using such TME chemical heterogeneity imaging to inform precision oncology.

3.
Analyst ; 146(12): 3933-3941, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33982697

RESUMO

Detection of singlet oxygen is of great importance for a range of therapeutic applications, particularly photodynamic therapy, plasma therapy and also during photo-endosomolytic activity. Here we present a novel method of intracellular detection of singlet oxygen using biocompatible polymeric nanosensors, encapsulating the organic fluorescent dye, Singlet Oxygen Sensor Green (SOSG) within its hydrophobic core. The singlet oxygen detection efficiency of the nanosensors was quantified experimentally by treating them with a plasma source and these results were further validated by using Monte Carlo simulations. The change in fluorescence intensity of the nanosensors serves as a metric to detect singlet oxygen in the local micro-environment inside mammalian cancer cells. We used these nanosensors for monitoring singlet oxygen inside endosomes and lysosomes of cancer cells, during cold plasma therapy, using a room-temperature Helium plasma jet.


Assuntos
Fotoquimioterapia , Oxigênio Singlete , Animais , Corantes Fluorescentes , Oxigênio , Fármacos Fotossensibilizantes
4.
Anal Chem ; 91(4): 2561-2569, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30638359

RESUMO

We describe how 4-dimensional in vivo biochemical analysis can be performed using photoacoustic contrast nanoagents that have been designed to probe both structural and chemical information in vivo, enabling noninvasive, real time, spatially resolved chemical imaging. Early chemical imaging of a patient's tumor can inform the decision of effective treatment, regarding choices of chemotherapy, radiation, or immunotherapy.


Assuntos
Técnicas de Química Analítica/métodos , Neoplasias/química , Técnicas Fotoacústicas/métodos , Animais , Humanos , Concentração de Íons de Hidrogênio , Lítio/sangue , Camundongos , Imagem Óptica/métodos , Oxigênio/sangue , Potássio/análise , Microambiente Tumoral/fisiologia
5.
Anal Chem ; 89(15): 7943-7949, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633520

RESUMO

Ion-selective optodes (ISOs), the optical analog of ion-selective electrodes, have played an increasingly important role in chemical and biochemical analysis. Here we extend this technique to ion-selective photoacoustic optodes (ISPAOs) that serve at the same time as fluorescence-based ISOs, and apply it specifically to potassium (K+). Notably, the potassium ion is one of the most abundant cations in biological systems, involved in numerous physiological and pathological processes. Furthermore, it has been recently reported that the presence of abnormal extracellular potassium concentrations in tumors suppresses the immune responses and thus suppresses immunotherapy. However, unfortunately, sensors capable of providing potassium images in vivo are still a future proposition. Here, we prepared an ion-selective potassium nanosensor (NS) aimed at in vivo photoacoustic (PA) chemical imaging of the extracellular environment, while being also capable of fluorescence based intracellular ion-selective imaging. This potassium nanosensor (K+ NS) modulates its optical properties (absorbance and fluorescence) according to the potassium concentration. The K+ NS is capable of measuring potassium, in the range of 1 mM to 100 mM, with high sensitivity and selectivity, by ISPAO based measurements. Also, a near infrared dye surface modified K+ NS allows fluorescence-based potassium sensing in the range of 20 mM to 1 M. The K+ NS serves thus as both PA and fluorescence based nanosensor, with response across the biologically relevant K+ concentrations, from the extracellular 5 mM typical values (through PA imaging) to the intracellular 150 mM typical values (through fluorescence imaging).


Assuntos
Nanoestruturas/química , Técnicas Fotoacústicas/métodos , Potássio/análise , Aminas/química , Cátions/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Eletrodos Seletivos de Íons , Micelas , Microscopia de Fluorescência , Poloxâmero/química
6.
J Neurophysiol ; 112(2): 205-12, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24598521

RESUMO

We utilized a novel ratiometric nanoquantum dot fluorescence resonance energy transfer (NQD-FRET) optical sensor to quantitatively measure oxygen dynamics from single cell microdomains during hypoxic episodes as well as during 4-aminopyridine (4-AP)-induced spontaneous seizure-like events in rat hippocampal slices. Coupling oxygen sensing with electrical recordings, we found the greatest reduction in the O2 concentration ([O2]) in the densely packed cell body stratum (st.) pyramidale layer of the CA1 and differential layer-specific O2 dynamics between the st. pyramidale and st. oriens layers. These hypoxic decrements occurred up to several seconds before seizure onset could be electrically measured extracellularly. Without 4-AP, we quantified a narrow range of [O2], similar to the endogenous hypoxia found before epileptiform activity, which permits a quiescent network to enter into a seizure-like state. We demonstrated layer-specific patterns of O2 utilization accompanying layer-specific neuronal interplay in seizure. None of the oxygen overshoot artifacts seen with polarographic measurement techniques were observed. We therefore conclude that endogenously generated hypoxia may be more than just a consequence of increased cellular excitability but an influential and critical factor for orchestrating network dynamics associated with epileptiform activity.


Assuntos
Região CA1 Hipocampal/metabolismo , Oxigênio/metabolismo , Convulsões/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiopatologia , Masculino , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Convulsões/fisiopatologia
7.
Chemphyschem ; 15(16): 3444-6, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25195559

RESUMO

We use fractal analysis to calculate the protein concentration in a rotating magnetic assembly of microbeads of size 1 µm, which has optimized parameters of sedimentation, binding sites and magnetic volume. We utilize the original Forrest-Witten method, but due to the relatively small number of bead particles, which is of the order of 500, we use a large number of origins and also a large number of algorithm iterations. We find a value of the fractal dimension in the range 1.70-1.90, as a function of the thrombin concentration, which plays the role of binding the microbeads together. This is in good agreement with previous results from magnetorotation studies. The calculation of the fractal dimension using multiple points of reference can be used for any assembly with a relatively small number of particles.


Assuntos
Microesferas , Trombina/análise , Fractais , Magnetismo , Tamanho da Partícula , Ligação Proteica , Software
8.
Biomacromolecules ; 15(10): 3728-34, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25162488

RESUMO

Here we introduce a modified peptide-decorated polymeric nanoparticle (NP) for cancer cell targeting, which can deliver drugs, such as doxorubicin (Dox), to several kinds of cancer cells. Specifically, we employ a nucleolin-targeting NP, with a matrix based on a copolymer of acrylamide (AAm) and 2-carboxyethyl acrylate (CEA). The negatively charged co(CEA-AAm) NP was conjugated with a nucleolin-targeting F3 peptide using a highly efficient and specific copper(I) catalyzed azide-alkyne click reaction. F3 peptide binds to angiogenic tumor vasculatures and other nucleolin overexpressing tumor cells. Attaching F3 peptide onto the NP increases the NP uptake by the nucleolin-expressing glioma cell line 9L and the breast cancer cell line MCF-7. Notably, the F3-conjugated NPs show much higher uptake by the nucleolin-overexpressing glioma cell line 9L than that by the breast cancer cell line MCF-7, the latter having a lower expression of nucleolin on its plasma membrane surface. Moreover, the F3 peptide also dramatically enhances the uptake of co(CEA-AAm) NPs by the drug-resistant cell line NCI/ADR-RES. Also, with this F3-conjugated co(CEA-AAm) NP, a high loading and slow release of doxorubicin were achieved.


Assuntos
Glioma/tratamento farmacológico , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Nanopartículas/administração & dosagem , Peptídeos/farmacologia , Acrilamida/farmacologia , Acrilatos/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Glioma/metabolismo , Humanos , Células MCF-7 , Fosfoproteínas/metabolismo , Polímeros/farmacologia , Proteínas de Ligação a RNA/metabolismo , Ratos , Nucleolina
9.
Nanotechnology ; 25(44): 445104, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25325364

RESUMO

Here, we present a new optical contrast agent based on silver nanoplate clusters embedded inside of a polymer nano matrix. Unlike nanosphere clusters, which have been well studied, nanoplate clusters have unique properties due to the different possible orientations of interaction between the individual plates, resulting in a significant broadening of the absorption spectra. These nanoclusters were immobilized inside of a polymer cladding so as to maintain their stability and optical properties under in vivo conditions. The polymer-coated silver nanoplate clusters show a lower toxicity compared to the uncoated nanoparticles. At high nanoparticle concentrations, cell death occurs mostly due to apoptosis. These nanoparticles were used for targeted fluorescence imaging in a rat glioma cell line by incorporating a fluorescent dye into the matrix, followed by conjugation of a tumor targeting an F3 peptide. We further used these nanoparticles as photoacoustic contrast agents in vivo to enhance the contrast of the vasculature structures in a rat ear model. We observed a contrast enhancement of over 90% following the nanoparticle injection. It is also shown that these NPs can serve as efficient contrast agents, with specific targeting abilities for broadband multimodal imaging that are usable for diagnostic applications and that extend into use as therapeutic agents as well.


Assuntos
Neoplasias Encefálicas/diagnóstico , Meios de Contraste/síntese química , Diagnóstico por Imagem/métodos , Gliossarcoma/diagnóstico , Nanopartículas , Animais , Apoptose , Neoplasias Encefálicas/metabolismo , Gliossarcoma/metabolismo , Nanopartículas/efeitos adversos , Nanopartículas/ultraestrutura , Estresse Oxidativo , Polímeros/síntese química , Ratos , Prata
10.
Analyst ; 138(11): 3126-30, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23598348

RESUMO

Presented here is a novel method of in vivo pH sensing utilizing a hybrid optical imaging technique, photoacoustic imaging (PAI), and pH sensitive polymeric nanoprobes. Nanoprobes with hydrophobic core containing a pH sensitive dye were synthesized and used to measure the pH level ex vivo first and then in vivo by performing experiments on a rat joint model, with an achieved precision of less than 0.1 pH units. The ability of the hydrophobic functional groups in the polyacrylamide matrix to shield the molecular dye from being affected by the proteins in the plasma, and prevent the dye from leaching out, is also demonstrated.


Assuntos
Corantes Fluorescentes/química , Nanotecnologia/instrumentação , Técnicas Fotoacústicas/métodos , Análise Espectral , Resinas Acrílicas/química , Animais , Calibragem , Concentração de Íons de Hidrogênio , Naftóis/química , Ratos
11.
Biosensors (Basel) ; 13(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37887116

RESUMO

Sodium has many vital and diverse roles in the human body, including maintaining the cellular pH, generating action potential, and regulating osmotic pressure. In cancer, sodium dysregulation has been correlated with tumor growth, metastasis, and immune cell inhibition. However, most in vivo sodium measurements are performed via Na23 NMR, which is handicapped by slow acquisition times, a low spatial resolution (in mm), and low signal-to-noise ratios. We present here a plasticizer-free, ionophore-based sodium-sensing nanoparticle that utilizes a solvatochromic dye transducer to circumvent the pH cross-sensitivity of most previously reported sodium nano-sensors. We demonstrate that this nano-sensor is non-toxic, boasts a 200 µM detection limit, and is over 1000 times more selective for sodium than potassium. Further, the in vitro photoacoustic calibration curve presented demonstrates the potential of this nano-sensor for performing the in vivo chemical imaging of sodium over the entire physiologically relevant concentration range.


Assuntos
Potássio , Sódio , Humanos , Concentração de Íons de Hidrogênio , Íons , Diagnóstico por Imagem
12.
Biosensors (Basel) ; 13(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36979615

RESUMO

Evaluating the aggressiveness of prostate cancer (PCa) is crucial for PCa diagnosis and prognosis. Previously, studies have shown that photoacoustic spectral analysis (PASA) can assess prostate tissue microarchitecture for evaluating the aggressiveness of PCa. In this study, in a transgenic mouse (TRAMP) model of PCa, we utilized methylene blue polyacrylamide nanoparticles (MB PAA NPs) to label the cancer cells in prostate in vivo. MB PAA NPs can specifically target proliferating cancer cells as a contrast agent, allowing photoacoustic (PA) imaging to better detect PCa tumors, and also assessing prostate glandular architecture. With the PA signals from the prostates measured simultaneously by a needle hydrophone and a PA and ultrasound (US) dual-imaging system, we conducted PASA and correlated the quantified spectral parameter slopes with the cancer grading from histopathology. The PASA results from 18 mice showed significant differences between normal and cancer, and also between low-score cancer and high-score cancer. This study in the clinically relevant TRAMP model of PCa demonstrated that PA imaging and PASA, powered by MB PAA NPs that can label the PCa microarchitectures in vivo after systemic administration, can detect PCa and, more importantly, evaluate cancer aggressiveness.


Assuntos
Nanopartículas , Técnicas Fotoacústicas , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Azul de Metileno , Neoplasias da Próstata/diagnóstico por imagem , Próstata , Técnicas Fotoacústicas/métodos
13.
ACS Nano ; 17(5): 4396-4403, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36847392

RESUMO

We hereby apply the approach of photoacoustic chemical imaging, performing an in vivo chemical analysis that is spatially resolved (200 µm) and in real time, to predict a given tumor's response to therapy. Using triple negative breast cancer as a model, we took photoacoustic images of tumors' oxygen distributions in patient-derived xenografts (PDXs) in mice using biocompatible, oxygen-sensitive tumor-targeted chemical contrast nanoelements (nanosonophores), which function as contrast agents for photoacoustic imaging. Following radiation therapy, we established a quantitatively significant correlation between the spatial distribution of the initial oxygen levels in the tumor and its spatial distribution of the therapy's efficacy: the lower the local oxygen, the lower the local radiation therapy efficacy. We thus provide a simple, noninvasive, and inexpensive method to both predict the efficacy of radiation therapy for a given tumor and identify treatment-resistant regions within the tumor's microenvironment.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Animais , Camundongos , Oxigênio , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Neoplasias/patologia , Técnicas Fotoacústicas/métodos , Linhagem Celular Tumoral , Microambiente Tumoral
14.
Anal Chem ; 84(2): 978-86, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22122409

RESUMO

Ca(2+) is a universal second messenger and plays a major role in intracellular signaling, metabolism, and a wide range of cellular processes. To date, one of the most successful approaches for intracellular Ca(2+) measurement involves the introduction of optically sensitive Ca(2+) indicators into living cells, combined with digital imaging microscopy. However, the use of free Ca(2+) indicators for intracellular sensing and imaging has several limitations, such as nonratiometric measurement for the most-sensitive indicators, cytotoxicity of the indicators, interference from nonspecific binding caused by cellular biomacromolecules, challenging calibration, and unwanted sequestration of the indicator molecules. These problems are minimized when the Ca(2+) indicators are encapsulated inside porous and inert polyacrylamide nanoparticles. We present PEBBLE nanosensors encapsulated with rhodamine-based Ca(2+) fluorescence indicators. The rhod-2-containing PEBBLEs presented here show a stable sensing range at near-neutral pH (pH 6-9). Because of the protection of the PEBBLE matrix, the interference of protein-nonspecific binding to the indicator is minimal. The rhod-2 PEBBLEs give a nanomolar dynamic sensing range for both in-solution (K(d) = 478 nM) and intracellular (K(d) = 293 nM) measurements. These nanosensors are useful quantitative tools for the measurement and imaging of the cytosolic nanomolar free Ca(2+) levels.


Assuntos
Técnicas Biossensoriais , Cálcio/metabolismo , Processamento de Imagem Assistida por Computador , Nanopartículas , Humanos , Masculino , Nanotecnologia , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas
15.
Anal Chem ; 84(12): 5250-6, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22507307

RESUMO

The long turnaround time in antimicrobial susceptibility testing (AST) endangers patients and encourages the administration of wide spectrum antibiotics, thus resulting in alarming increases of multidrug resistant pathogens. A method for faster detection of bacterial proliferation presents one avenue toward addressing this global concern. We report on a label-free asynchronous magnetic bead rotation (AMBR) based viscometry method that rapidly detects bacterial growth and determines drug sensitivity by measuring changes in the suspension's viscosity. With this platform, we observed the growth of a uropathogenic Escherichia coli isolate, with an initial concentration of 50 cells per drop, within 20 min; in addition, we determined the gentamicin minimum inhibitory concentration (MIC) of the E. coli isolate within 100 min. We thus demonstrated a label-free, microviscometer platform that can measure bacterial growth and drug susceptibility more rapidly, with lower initial bacterial counts than existing commercial systems, and potentially with any microbial strains.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Imãs , Microesferas , Microtecnologia/instrumentação , Rotação , Gentamicinas/farmacologia , Fatores de Tempo , Viscosidade
17.
Small ; 8(14): 2213-21, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22517569

RESUMO

A novel nanophotonic method for enhancing the two-photon fluorescence signal of a fluorophore is presented. It utilizes the second harmonic (SH) of the exciting light generated by noble metal nanospheres in whose near-field the dye molecules are placed, to further enhance the dye's fluorescence signal in addition to the usual metal-enhanced fluorescence phenomenon. This method enables demonstration, for the first time, of two-photon fluorescence enhancement inside a biological system, namely live cells. A multishell hydrogel nanoparticle containing a silver core, a protective citrate capping, which serves also as an excitation quenching inhibitor spacer, a pH indicator dye shell, and a polyacrylamide cladding are employed. Utilizing this technique, an enhancement of up to 20 times in the two-photon fluorescence of the indicator dye is observed. Although a significant portion of the enhanced fluorescence signal is due to one-photon processes accompanying the SH generation of the exciting light, this method preserves all the advantages of infrared-excited, two-photon microscopy: enhanced penetration depth, localized excitation, low photobleaching, low autofluorescence, and low cellular damage.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Nanopartículas/química , Imagem Óptica/métodos , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Aumento da Imagem/métodos , Tamanho da Partícula , Difração de Raios X
18.
Small ; 8(16): 2477-82, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22674520

RESUMO

Bacterial antibiotic resistance is one of the major concerns of modern healthcare worldwide, and the development of rapid, growth-based, antimicrobial susceptibility tests is key for addressing it. The cover image shows a self-assembled asynchronous magnetic bead rotation (AMBR) biosensor developed for rapid detection of bacterial growth. Using the biosensors, the minimum inhibitory concentration of a clinical E. coli isolate can be measured within two hours, where currently tests take 6-24 hours. A 16-well prototype is also constructed for simple and robust observation of the self-assembled AMBR biosensors.


Assuntos
Anti-Infecciosos/farmacologia , Técnicas Biossensoriais/instrumentação , Escherichia coli/crescimento & desenvolvimento , Magnetismo/instrumentação , Testes de Sensibilidade Microbiana/instrumentação , Testes de Sensibilidade Microbiana/métodos , Microesferas , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Rotação
19.
Small ; 8(6): 884-91, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22232034

RESUMO

Delineation of tumor margins is a critical and challenging objective during brain cancer surgery. A tumor-targeting deep-blue nanoparticle-based visible contrast agent is described, which, for the first time, offers in vivo tumor-specific visible color staining. This technology thus enables color-guided tumor resection in real time, with no need for extra equipment or special lighting conditions. The visual contrast agent consists of polyacrylamide nanoparticles covalently linked to Coomassie Blue molecules (for nonleachable blue color contrast), which are surface-conjugated with polyethylene glycol and F3 peptides for efficient in vivo circulation and tumor targeting, respectively.


Assuntos
Neoplasias Encefálicas/patologia , Cirurgia Geral , Hidrogéis , Nanopartículas , Corantes de Rosanilina/química , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Células Tumorais Cultivadas , Recursos Humanos
20.
Langmuir ; 28(32): 11676-86, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22812904

RESUMO

DNA short oligo, surfactant, peptides, and polymer-assisted dispersion of single-walled carbon nanotube (SWCNTs) in aqueous solution have been intensively studied. It has been suggested that van der Waals interaction, π-π stacking, and hydrophobic interaction are major factors that account for the SWCNTs dispersion. Fluorophore and dye molecules such as Rhodamine B and fluorescein have both hydrophilic and hydrophobic moieties. These molecules also contain π-conjugated systems that can potentially interact with SWCNTs to induce its dispersion. Through a systematic study, here we show that SWCNTs can be dispersed in aqueous solution in the presence of various fluorophore or dye molecules. However, the ability of a fluorophore or dye molecule to disperse SWCNTs is not correlated with the stability of the fluorophore/dye-SWCNT complex, suggesting that the on-rate of fluorophore/dye binding to SWCNTs may dominate the efficiency of this process. We also examined the uptake of fluorophore molecules by mammalian cells when these molecules formed complexes with SWCNTs. The results can have potential applications in the delivery of poor cell-penetrating fluorophore molecules.


Assuntos
Corantes Fluorescentes/metabolismo , Nanotubos de Carbono/química , Água/química , Transporte Biológico , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA