Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(4): 1627-1637, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36889305

RESUMO

Biopolymers are abundant, renewable, and biodegradable resources. However, bio-based materials often require toughening additives, like (co)polymers or small plasticizing molecules. Plasticization is monitored via the glass transition temperature versus diluent content. To describe this, several thermodynamic models exist; nevertheless, most expressions are phenomenological and lead to over-parametrization. They also fail to describe the influence of sample history and the degree of miscibility via structure-property relationships. We propose a new model to deal with semi-compatible systems: the generalized mean model, which can classify diluent segregation or partitioning. When the constant kGM is below unity, the addition of plasticizers has hardly any effect, and in some cases, even anti-plasticization is observed. On the other hand, when the kGM is above unity, the system is highly plasticized even for a small addition of the plasticizer compound, which indicates that the plasticizer locally has a higher concentration. To showcase the model, we studied Na-alginate films with increasing sizes of sugar alcohols. Our kGM analysis showed that blends have properties that depend on specific polymer interactions and morphological size effects. Finally, we also modeled other plasticized (bio)polymer systems from the literature, concluding that they all tend to have a heterogeneous nature.


Assuntos
Plastificantes , Polímeros , Temperatura de Transição , Temperatura , Biopolímeros , Excipientes
2.
Angew Chem Int Ed Engl ; 59(52): 23748-23754, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-32914922

RESUMO

Reported here is a 2D, interfacial microcompartmentalization strategy governed by 3D phase separation. In aqueous polyethylene glycol (PEG) solutions doped with biotinylated polymers, the polymers spontaneously accumulate in the interfacial layer between the oil-surfactant-water interface and the adjacent polymer phase. In aqueous two-phase systems, these polymers first accumulated in the interfacial layer separating two polymer solutions and then selectively migrated to the oil-PEG interfacial layer. By using polymers with varying photopolymerizable groups and crosslinking rates, kinetic control and capture of spatial organisation in a variety of compartmentalized macroscopic structures, without the need of creating barrier layers, was achieved. This selective interfacial accumulation provides an extension of 3D phase separation towards synthetic compartmentalization, and is also relevant for understanding intracellular organisation.

3.
Langmuir ; 31(6): 1874-8, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25619285

RESUMO

The relation between the complex surface dilatational modulus E of aqueous surfactant solutions and the splashing behavior of their drops on liquid surfaces was investigated. The surface dilatational modulus E of selected surfactant systems has been determined in the frequency range of 3 to 500 Hz by means of the oscillating bubble technique. According to the functional dependence of the phase ϕ of the complex modulus E(ω, c)exp[iϕ(ω, c)] at higher frequencies, adsorption layers can be classified as surface elastic or surface viscoelastic. Each behavior shows pronounced differences in drop splashing experiments. The impact of a drop on the liquid was monitored with a high-speed camera. The splash of a drop is a rather complex phenomenon, so the focus of this article is to establish a relationship between the imaginary part of the surface dilatational modulus E and the height of the drop rebound. These findings may be of importance for formulations in crop protection, introducing a chemical way to influence the impact of drops on solid and liquid interfaces.

4.
Langmuir ; 30(28): 8300-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24979206

RESUMO

We demonstrate that for high yield wet synthesis of monodispersed nanoparticles high surfactant content bicontinuous microemulsions offer an advantageous template as particle size is limited by the embedding matrix whereas particle aggregation is largely prohibited by its structure. We synthesized platinum nanoparticles varying the reaction rate, metal precursor and reducing agent type and concentration, and the composition of the microemulsion in water content and oil type. High yields of up to 0.4% of metal produced per weight of template were achieved without affecting the particle size, ca. 2 nm. We showed that our method is robust in the sense that particle size is hardly dependent on synthesis conditions. This is attributed to the fact that the packing of surfactant on nanoparticle surfaces is the only parameter determining the particle size. It can only be slightly varied with ionic strength, headgroup hydration, and tail solvency through oil variation. Water content mainly affects the microemulsion stability and through that the colloidal stability of the nanoparticles. Hydrazine as a reducing agent poses a special case as it causes dimerization of the surfactant and hence modifies the surfactant parameter as well as the stability. Finally, we highlighted the differences in comparison to nanoparticle synthesis in standard water-in-oil microemulsions, and we propose a mechanism of particle formation.

5.
Soft Matter ; 10(8): 1151-4, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24651601

RESUMO

Surfactant-free emulsion polymerization involving a nonionic, and hence uncharged initiator presents a new approach towards environmentally friendly procedures to synthesize latex particles. Under optimal solvent conditions, notably pH and ionic strength, the latex particles are stabilized by the natural development of ionic charge at the surface of the particles. We emphasize that the present process does not at all involve the addition of stabilizers such as surfactants or the creation of surface-active species from ionic initiators. The width of the size distribution is found to vary strongly with experimental conditions, notably the ionic strength and to a much lesser extent pH. The phenomenon is explained by a critical ionic strength dependence of the aggregation of the just nucleated primary particles into larger secondary particles, the so-called "coagulative nucleation" step.


Assuntos
Microesferas , Concentração Osmolar , Polimerização , Tensoativos/química
6.
Langmuir ; 29(37): 11724-9, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23965135

RESUMO

It is generally believed that surfactant-free emulsion polymerization involves four steps: initiation, nucleation into primary particles, coagulation into secondary particles, and growth. By high resolution SEM-imaging of the intermediate polymerization products, the evolution of the morphology of the polymer particles has been followed. This allowed us, to our best knowledge for the first time, to visualize "coagulative nucleation", which is the process where the primary nanoparticles aggregate into larger entities. The obtained visual information and data on particle size, number, and zeta potential, strongly suggest that coagulative termination is responsible for the coagulative nucleation phenomenon, resulting in a dispersion of fine, relatively uniform polymer particles.

7.
Langmuir ; 28(7): 3397-402, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22263549

RESUMO

Aggregation behavior and thermodynamic properties of two novel homologous aromatic moiety bearing hybrid fluorocarbon surfactants, sodium 2-(2-(4-ethylphenyl)-1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate (1) and sodium 2-(1,1,2,2-tetrafluoro-2-(4-vinylphenyl)ethoxy)-1,1,2,2-tetrafluoroethanesulfonate (2) were studied using surface tension measurements and isothermal titration calorimetry (ITC) in dilute aqueous solutions at room temperature. Because of the aromatic group in the hydrophobic tail, both surfactants are soluble at room temperature unlike their starting precursor, 5-iodooctafluoro-3-oxapentanesulfonate as well as several other fluorocarbon sulfonic acid salts. Moreover, the surfactant 2 has the ability that it can be polymerized once microemulsions are formed with it. The ionic conductivity measurements of 1 at five different temperatures from 288 to 313 K were carried out to study the effect of temperature on the micellization and its thermodynamics. The pseudophase separation model was applied to estimate thermodynamic quantities from conductivity data. The Gibbs energy of micellization versus temperature exhibited the characteristic U-shaped behavior with a minimum at 306 K. The micellization process was found to be largely entropy driven. Because of its hybrid structure, the entropy change of micellization for 1 was larger than what is common for hydrocarbon surfactants like SDS but less than for fully fluorinated surfactants like NaPFO. The micellization process was found to be following the entropy-enthalpy compensation phenomena.

8.
Langmuir ; 28(38): 13570-6, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22873840

RESUMO

Dynamic covalent chemistry is a powerful tool for the construction of adaptive and stimulus-responsive nanosystems. Here we report on the spontaneous formation of dynamic covalent wormlike micelles from imine-based gemini surfactants, formed upon mixing aqueous solutions of two complementary non-surface-active precursors. Resulting from the reversibility of the dynamic covalent imine bond, the wormlike micelles can be switched between an isotropic solution and the assembled state, triggered by pH and temperature. Thermodynamic modeling of the reaction equilibria shows that, although mixtures of single- and double-tailed surfactants are formed, it is mainly the double-tailed surfactant that assembles into the wormlike micelles.


Assuntos
Tensoativos/química , Termodinâmica , Concentração de Íons de Hidrogênio , Micelas , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
9.
Langmuir ; 27(12): 7783-7, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21598929

RESUMO

Noble metal particles can be made strongly ferromagnetic or diamagnetic provided that they are synthesized in a sufficiently strong magnetic field. Here we outline two synthesis methods that are fast, reproducible, and allow broad control over particle sizes ranging from nanometers to millimeters. From magnetometry and light spectroscopy, it appears that the cause of this anomalous magnetism is the surface anisotropy in the noble metal particles induced by the applied magnetic field. This work offers an elegant alternative to composite materials of noble metals and magnetic impurities.

11.
Front Chem ; 8: 163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32232025

RESUMO

Magnetic field effects can provide a handle on steering chemical reactions and manipulating yields. The presence of a magnetic field can influence the energy levels of the active species by interacting with their spin states. Here we demonstrate the effect of a magnetic field on the electrocatalytic processes taking place on platinum-based nanoparticles in fuel cell conditions. We have identified a shift in the potentials representing hydrogen adsorption and desorption, present in all measurements recorded in the presence of a magnetic field. We argue that the changes in electrochemical behavior are a result of the interactions between the magnetic field and the unpaired spin states of hydrogen.

12.
J Am Chem Soc ; 131(32): 11274-5, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19627081

RESUMO

A prototype surfactant system was developed with the unique feature that it can be switched between an aggregated, amphiphilic state and a nonaggregated, nonamphiphilic state using external stimuli. This switchable surfactant system uses the reversible formation of a dynamic covalent bond for pH- and temperature-triggered on/off self-assembly of micellar aggregates by reversible displacement of the equilibrium between nonamphiphilic building blocks and their amphiphilic counterparts. The potential for application in controlled-release systems is shown by reversible uptake and release of an organic dye in aqueous media.


Assuntos
Preparações de Ação Retardada/química , Micelas , Tensoativos/química , Corantes/administração & dosagem , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Água/química
13.
Chem Commun (Camb) ; 55(9): 1338-1341, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30638232

RESUMO

We report on the effect of lattice strain in three different types of core-shell electrocatalyst particles on their catalytic activity towards the oxygen reduction reaction. We decouple the changes in catalytic activity with respect to a geometrical and an energetic contribution, both of electronic origin.

14.
Materials (Basel) ; 10(6)2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28772939

RESUMO

We hypothesize that the properties of proton-exchange membranes for fuel cell applications cannot be described unambiguously unless interface effects are taken into account. In order to prove this, we first develop a thermodynamically consistent description of the transport properties in the membranes, both for a homogeneous membrane and for a homogeneous membrane with two surface layers in contact with the electrodes or holder material. For each subsystem, homogeneous membrane, and the two surface layers, we limit ourselves to four parameters as the system as a whole is considered to be isothermal. We subsequently analyze the experimental results on some standard membranes that have appeared in the literature and analyze these using the two different descriptions. This analysis yields relatively well-defined values for the homogeneous membrane parameters and estimates for those of the surface layers and hence supports our hypothesis. As demonstrated, the method used here allows for a critical evaluation of the literature values. Moreover, it allows optimization of stacked transport systems such as proton-exchange membrane fuel cell units where interfacial layers, such as that between the catalyst and membrane, are taken into account systematically.

15.
J Phys Chem B ; 110(22): 10937-50, 2006 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-16771347

RESUMO

The coupling between proton binding and conformational degrees of freedom in polyprotic molecules and polyelectrolytes is studied theoretically. Our approach combines the classical rotational isomeric state (RIS) model developed by Flory and the site binding (SB) model used to treat proton binding equilibria. The properties of the resulting SBRIS model, which treats conformational degrees of freedom and proton binding on equal footing, are studied with statistical mechanical techniques. Quantities of interest, such as titration curves, conformational probabilities, or macroscopic binding constants, are expressed as thermal averages and are evaluated by direct enumeration of states or by transfer matrix techniques. We further demonstrate that in the SBRIS model conformational degrees of freedom can be averaged out, leading to the contracted description within the SB model. In most cases, this contraction leads to higher order interactions, which may not be present at the SBRIS level (e.g., triplet interactions). Several examples are discussed to illustrate the concepts developed. The case of succinic acid exemplifies the situation in its simplest form. The model can further rationalize the very different titration behavior of poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA). In particular, the characteristic "jump" in the titration curve of PMAA is described quantitatively and is interpreted in terms of a conformational transition.

16.
J Colloid Interface Sci ; 303(2): 460-71, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16978638

RESUMO

Deposition of positively charged nanosized latex particles onto planar silica and cellulose substrates was studied in monovalent electrolyte solutions at pH 9.5. The deposition was probed in situ with optical reflectometry in a stagnation point flow cell. The surface coverage can be estimated reliably with island film theory as well as with a homogeneous film model, as confirmed with atomic force microscopy (AFM). The deposition kinetics on the bare surface was of first order with respect to the particle concentration, whereby the deposition rate was close to the value expected for a perfect collector. The efficiency coefficient, which was defined as the ratio of the experimental and theoretical deposition rate constants, was in the range from 0.3 to 0.7. Subsequently, the surface saturated and a limiting maximum coverage was attained (i.e., blocking). These trends were in qualitative agreement with predictions of the random sequential absorption (RSA) model, where electrostatic interactions between the particles were included. It was observed, however, that the substrate strongly influenced the maximum coverage, which was substantially higher for silica than for cellulose. The major conclusion of this work was that the nature of the substrate played an important role in a saturated layer of deposited colloidal particles.


Assuntos
Celulose/química , Látex/química , Nanopartículas/química , Óptica e Fotônica , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Modelos Químicos , Propriedades de Superfície
19.
Faraday Discuss ; 181: 37-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25925658

RESUMO

The design of a synthesis strategy for metal nanoparticles by templating dense microemulsions is proposed. Particle size is controlled by surfactant size rather than by microemulsion composition. The strategy was demonstrated with various systems with different surfactant: cationic, anionic and non-ionic and of different sizes. Formulations were determined using the microemulsion phase diagrams. Synthesis was demonstrated for platinum nanoparticles with some examples for gold. The nanoparticles were subsequently extracted from the microemulsion by absorption onto a carbon support, after which the surfactant was recycled.

20.
Science ; 349(6252): 1075-9, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26339025

RESUMO

Fuel-driven self-assembly of actin filaments and microtubules is a key component of cellular organization. Continuous energy supply maintains these transient biomolecular assemblies far from thermodynamic equilibrium, unlike typical synthetic systems that spontaneously assemble at thermodynamic equilibrium. Here, we report the transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel. In these materials, reaction rates and fuel levels, instead of equilibrium composition, determine properties such as lifetime, stiffness, and self-regeneration capability. Fibers exhibit strongly nonlinear behavior including stochastic collapse and simultaneous growth and shrinkage, reminiscent of microtubule dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA