Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 631(8020): 340-343, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867052

RESUMO

The solid inner core, suspended within the liquid outer core and anchored by gravity, has been inferred to rotate relative to the surface of Earth or change over years to decades based on changes in seismograms from repeating earthquakes and explosions1,2. It has a rich inner structure3-6 and influences the pattern of outer core convection and therefore Earth's magnetic field. Here we compile 143 distinct pairs of repeating earthquakes, many within 16 multiplets, built from 121 earthquakes between 1991 and 2023 in the South Sandwich Islands. We analyse their inner-core-penetrating PKIKP waves recorded on the medium-aperture arrays in northern North America. We document that many multiplets exhibit waveforms that change and then revert at later times to match earlier events. The matching waveforms reveal times at which the inner core re-occupies the same position, relative to the mantle, as it did at some time in the past. The pattern of matches, together with previous studies, demonstrates that the inner core gradually super-rotated from 2003 to 2008, and then from 2008 to 2023 sub-rotated two to three times more slowly back through the same path. These matches enable precise and unambiguous tracking of inner core progression and regression. The resolved different rates of forward and backward motion suggest that new models will be necessary for the dynamics between the inner core, outer core and mantle.

2.
Nature ; 620(7974): 570-575, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37407825

RESUMO

Earth's inner core acquires texture as it solidifies within the fluid outer core. The size, shape and orientation of the mostly iron grains making up the texture record the growth of the inner core and may evolve over geologic time in response to geodynamical forces and torques1. Seismic waves from earthquakes can be used to image the texture, or fabric, of the inner core and gain insight into the history and evolution of Earth's core2-6. Here, we observe and model seismic energy backscattered from the fine-scale (less than 10 km) heterogeneities7 that constitute inner core fabric at larger scales. We use a novel dataset created from a global array of small-aperture seismic arrays-designed to detect tiny signals from underground nuclear explosions-to create a three-dimensional model of inner core fine-scale heterogeneity. Our model shows that inner core scattering is ubiquitous, existing across all sampled longitudes and latitudes, and that it substantially increases in strength 500-800 km beneath the inner core boundary. The enhanced scattering in the deeper inner core is compatible with an era of rapid growth following delayed nucleation.

3.
Geophys J Int ; 224(1): 230-240, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34556900

RESUMO

Monitoring mining-induced seismicity (MIS) can help engineers understand the rock mass response to resource extraction. With a thorough understanding of ongoing geomechanical processes, engineers can operate mines, especially those mines with the propensity for rock-bursting, more safely and efficiently. Unfortunately, processing MIS data usually requires significant effort from human analysts, which can result in substantial costs and time commitments. The problem is exacerbated for operations that produce copious amounts of MIS, such as mines with high-stress and/or extraction ratios. Recently, deep learning methods have shown the ability to significantly improve the quality of automated arrival-time picking on earthquake data recorded by regional seismic networks. However, relatively little has been published on applying these techniques to MIS. In this study, we compare the performance of a convolutional neural network (CNN) originally trained to pick arrival times on the Southern California Seismic Network (SCSN) to that of human analysts on coal-mine-related MIS. We perform comparisons on several coal-related MIS data sets recorded at various network scales, sampling rates and mines. We find that the Southern-California-trained CNN does not perform well on any of our data sets without retraining. However, applying the concept of transfer learning, we retrain the SCSN model with relatively little MIS data after which the CNN performs nearly as well as a human analyst. When retrained with data from a single analyst, the analyst-CNN pick time residual variance is lower than the variance observed between human analysts. We also compare the retrained CNN to a simpler, optimized picking algorithm, which falls short of the CNN's performance. We conclude that CNNs can achieve a significant improvement in automated phase picking although some data set-specific training will usually be required. Moreover, initializing training with weights found from other, even very different, data sets can greatly reduce the amount of training data required to achieve a given performance threshold.

4.
Nature ; 490(7419): 245-9, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23023129

RESUMO

The Indo-Australian plate is undergoing distributed internal deformation caused by the lateral transition along its northern boundary--from an environment of continental collision to an island arc subduction zone. On 11 April 2012, one of the largest strike-slip earthquakes ever recorded (seismic moment magnitude M(w) 8.7) occurred about 100-200 kilometres southwest of the Sumatra subduction zone. Occurrence of great intraplate strike-slip faulting located seaward of a subduction zone is unusual. It results from northwest-southeast compression within the plate caused by the India-Eurasia continental collision to the northwest, together with northeast-southwest extension associated with slab pull stresses as the plate underthrusts Sumatra to the northeast. Here we use seismic wave analyses to reveal that the 11 April 2012 event had an extraordinarily complex four-fault rupture lasting about 160 seconds, and was followed approximately two hours later by a great (M(w) 8.2) aftershock. The mainshock rupture initially expanded bilaterally with large slip (20-30 metres) on a right-lateral strike-slip fault trending west-northwest to east-southeast (WNW-ESE), and then bilateral rupture was triggered on an orthogonal left-lateral strike-slip fault trending north-northeast to south-southwest (NNE-SSW) that crosses the first fault. This was followed by westward rupture on a second WNW-ESE strike-slip fault offset about 150 kilometres towards the southwest from the first fault. Finally, rupture was triggered on another en échelon WNW-ESE fault about 330 kilometres west of the epicentre crossing the Ninetyeast ridge. The great aftershock, with an epicentre located 185 kilometres to the SSW of the mainshock epicentre, ruptured bilaterally on a NNE-SSW fault. The complex faulting limits our resolution of the slip distribution. These great ruptures on a lattice of strike-slip faults that extend through the crust and a further 30-40 kilometres into the upper mantle represent large lithospheric deformation that may eventually lead to a localized boundary between the Indian and Australian plates.

5.
Nature ; 466(7309): 964-8, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20725038

RESUMO

Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12 metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50 km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone.

6.
Science ; 341(6152): 1380-4, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24052306

RESUMO

Earth's deepest earthquakes occur in subducting oceanic lithosphere, where temperatures are lower than in ambient mantle. On 24 May 2013, a magnitude 8.3 earthquake ruptured a 180-kilometer-long fault within the subducting Pacific plate about 609 kilometers below the Sea of Okhotsk. Global seismic P wave recordings indicate a radiated seismic energy of ~1.5 × 10(17) joules. A rupture velocity of ~4.0 to 4.5 kilometers/second is determined by back-projection of short-period P waves, and the fault width is constrained to give static stress drop estimates (~12 to 15 megapascals) compatible with theoretical radiation efficiency for crack models. A nearby aftershock had a stress drop one to two orders of magnitude higher, indicating large stress heterogeneity in the deep slab, and plausibly within the rupture process of the great event.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA