Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(44): 11192-11197, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30322920

RESUMO

To elucidate cellular diversity and clonal evolution in tissues and tumors, one must resolve genomic heterogeneity in single cells. To this end, we have developed low-cost, mass-producible micro-/nanofluidic chips for DNA extraction from individual cells. These chips have modules that collect genomic DNA for sequencing or map genomic structure directly, on-chip, with denaturation-renaturation (D-R) optical mapping [Marie R, et al. (2013) Proc Natl Acad Sci USA 110:4893-4898]. Processing of single cells from the LS174T colorectal cancer cell line showed that D-R mapping of single molecules can reveal structural variation (SV) in the genome of single cells. In one experiment, we processed 17 fragments covering 19.8 Mb of the cell's genome. One megabase-large fragment aligned well to chromosome 19 with half its length, while the other half showed variable alignment. Paired-end single-cell sequencing supported this finding, revealing a region of complexity and a 50-kb deletion. Sequencing struggled, however, to detect a 20-kb gap that D-R mapping showed clearly in a megabase fragment that otherwise mapped well to the reference at the pericentromeric region of chromosome 4. Pericentromeric regions are complex and show substantial sequence homology between different chromosomes, making mapping of sequence reads ambiguous. Thus, D-R mapping directly, from a single molecule, revealed characteristics of the single-cell genome that were challenging for short-read sequencing.


Assuntos
Mapeamento Cromossômico/métodos , DNA/genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Linhagem Celular Tumoral , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 4/genética , Evolução Clonal/genética , Neoplasias Colorretais/genética , Genômica/métodos , Humanos , Deleção de Sequência/genética
2.
Anticancer Drugs ; 24(8): 835-45, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23797801

RESUMO

Dacarbazine induces a clinical response only in 15% of melanoma patients. New treatment strategies may involve combinations of drugs with different modes of action to target the tumor heterogeneity. We aimed to determine whether the combined treatment of heterogeneous melanoma cell populations in vitro with the alkylating agent dacarbazine and the nuclear factor-κB inhibitor parthenolide could be more effective than either drug alone. A panel of melanoma cell lines, including highly heterogeneous populations derived from surgical specimens, was treated with dacarbazine and parthenolide. The effect of drugs on the viable cell number was examined using an acid phosphatase activity assay, and the combination effect was determined by median-effect analysis. Cell death and cell-cycle arrest were assessed by flow cytometry. Gene expression was measured by real-time PCR and changes in the protein levels were evaluated by western blotting. Secretion of vascular endothelial growth factor and interleukin-8 was determined using an enzyme-linked immunosorbent assay. The self-renewing capacity was assessed using a clonogenic assay. Dacarbazine was less effective in heterogeneous melanoma populations than in the A375 cell line. Parthenolide and dacarbazine synergistically reduced the viable cell numbers. Both drugs induced cell-cycle arrest and apoptotic cell death. Importantly, parthenolide abrogated the baseline and dacarbazine-induced vascular endothelial growth factor secretion from melanoma cells in heterogeneous populations, whereas interleukin-8 secretion was not significantly affected by either drug. Parthenolide eradicated melanoma cells with self-renewing capacity also in cultures simultaneously treated with dacarbazine. The combination of parthenolide and dacarbazine might be considered as a new therapeutic modality against metastatic melanoma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Interleucina-8/metabolismo , Melanoma/genética , Melanoma/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sesquiterpenos/farmacologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Med Chem Res ; 22(5): 2395-2402, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23542890

RESUMO

A series of six mononuclear Cu(II) complexes with pyrazole-based ligands: 5-(2-hydroxybenzoyl)-3-methyl-1-(2-pyridinyl)-1H-pyrazol-4-phosphonic acid dimethyl ester (1a), 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-carboxylic acid methyl ester (1b) and 1-benzothiazol-2-yl-5-(2-hydroxyphenyl)-3-methyl-1H-pyrazole-4-carboxylic acid methyl ester (1c) were characterized regarding to electrochemical and antioxidant properties. All complexes exhibit suitable Cu(II)/Cu(I) redox potential (E1/2) to act as antioxidant enzymes mimic. The five of these complexes were found to be trifunctional enzyme mimics possessing SOD, CAT and GPx-like catalytic activities. Moreover, Cu(II) complexes were capable to decrease ROS level in melanoma cells and observed effects were not merely a reflection of cytotoxicity.

4.
Postepy Hig Med Dosw (Online) ; 65: 734-51, 2011 Nov 23.
Artigo em Polonês | MEDLINE | ID: mdl-22173438

RESUMO

Melanoma is a tumour derived from melanocytes, cells of neuroectodermal origin. Melanoma treatment represents a challenge to oncologists due to its aggressive course and early and multiple metastases. Surgical excision of lesions is a highly effective intervention, but only in early stages. In contrast, median survival of patients with metastatic melanoma is still below one year. In 2011 the FDA and EMA have approved new drugs, ipilimumab and vemurafenib, that might be a major breakthrough in treating patients with advanced melanoma. However, time is needed to conclude whether they replace dacarbazine, a drug used for over 30 years in the therapy of metastatic melanoma, even if the response rate was only 10-15%. The mechanism of dacarbazine action is not clear but it is probably based on methylation of purine bases in DNA. The low therapeutic efficacy of dacarbazine might be the consequence of rapid removal of DNA lesions by repair systems. A high melanoma chemoresistance is also driven by the extent and nature of alterations in signal transductions in tumour cells. None of the previously conducted trials proved superiority of any treatment modality over monotherapy with dacarbazine. Higher response rates did not correlate with survival benefit, and more intense adverse effects were frequently observed. There are some expectations for targeted therapy and immunotherapy, which have already demonstrated some efficacy in clinical studies. This review aims at providing the current knowledge on dacarbazine and its analogue, temozolomide, including the latest results of clinical studies combining these drugs with other treatment protocols.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Indóis/uso terapêutico , Melanoma/tratamento farmacológico , Sulfonamidas/uso terapêutico , Anticorpos Monoclonais/química , Antineoplásicos Alquilantes/química , Dano ao DNA/efeitos dos fármacos , Dacarbazina/química , Humanos , Imunoterapia/métodos , Indóis/química , Ipilimumab , Ensaios Clínicos Controlados Aleatórios como Assunto , Sulfonamidas/química , Temozolomida , Vemurafenib
5.
Postepy Hig Med Dosw (Online) ; 64: 100-14, 2010 Mar 16.
Artigo em Polonês | MEDLINE | ID: mdl-20354259

RESUMO

Parthenolide, a sesquiterpene lactone derived from the leaves of feverfew (Tanacetum parthenium), is considered a main bioactive component of this herb. Feverfew has been used orally or as an infusion for the treatment of migraine, arthritis, fever, and stomachache. Besides its anti-inflammatory and anti-migraine properties, parthenolide also shows anticancer activities in a variety of cell lines. It contains an alpha-methylene-gamma-lactone ring and an epoxide moiety which are able to interact with nucleophilic sites of biologically important molecules. Parthenolide modulates multiple targets, thereby contributing to its various in vitro and in vivo effects. Inhibition of NF-kappaB activity, constitutive in many types of cancers, via either interaction with IKK or more directly with the p65 subunit of NF-kappaB, is considered one of the main mechanisms of its action. In addition, inhibition of STAT and MAP kinase activities and the induction of sustained JNK activity as well as p53 activity via influencing MDM2 and HDAC1 levels lead to an increased susceptibility of cancer cells to chemo- and radiotherapy. At the epigenetic level, parthenolide reduces HDAC1 level and, by inhibiting DNMT2 activity, induces global hypomethylation of DNA, which can restore the expressions of some suppressor genes. Moreover, this compound reduces the cellular level of GSH in cancer cells, followed by ROS accumulation and apoptosis. A unique property of parthenolide is its ability to induce cell death mainly in cancer cells, while sparing healthy ones and it also protects normal cells from UVB and oxidative stress. More remarkably, it seems to have the potential to target some cancer stem cells. Its wide array of biological activity and low toxicity make parthenolide a very promising drug with multi-pharmacological potential, largely dependent on the cellular context.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Sesquiterpenos/farmacologia , Humanos , Neoplasias/tratamento farmacológico
6.
Cells ; 8(3)2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909444

RESUMO

The caudal-related homeobox protein 1 (CDX1) is a transcription factor, which is important in the development, differentiation, and homeostasis of the gut. Although the involvement of CDX genes in the regulation of the expression levels of a few glycosyltransferases has been shown, associations between glycosylation phenotypes and CDX1 mRNA expression have hitherto not been well studied. Triggered by our previous study, we here characterized the N-glycomic phenotype of 16 colon cancer cell lines, selected for their differential CDX1 mRNA expression levels. We found that high CDX1 mRNA expression associated with a higher degree of multi-fucosylation on N-glycans, which is in line with our previous results and was supported by up-regulated gene expression of fucosyltransferases involved in antenna fucosylation. Interestingly, hepatocyte nuclear factors (HNF)4A and HNF1A were, among others, positively associated with high CDX1 mRNA expression and have been previously proven to regulate antenna fucosylation. Besides fucosylation, we found that high CDX1 mRNA expression in cancer cell lines also associated with low levels of sialylation and galactosylation and high levels of bisection on N-glycans. Altogether, our data highlight a possible role of CDX1 in altering the N-glycosylation of colorectal cancer cells, which is a hallmark of tumor development.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Glicômica , Proteínas de Homeodomínio/genética , Transcriptoma/genética , Linhagem Celular Tumoral , Fucose/metabolismo , Glicosilação , Hexosaminas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Antígenos do Grupo Sanguíneo de Lewis/química , Antígenos do Grupo Sanguíneo de Lewis/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Fenótipo , Polissacarídeos/química , Polissacarídeos/metabolismo , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Lab Chip ; 18(13): 1891-1902, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29873383

RESUMO

Sequencing the genomes of individual cells enables the direct determination of genetic heterogeneity amongst cells within a population. We have developed an injection-moulded valveless microfluidic device in which single cells from colorectal cancer derived cell lines (LS174T, LS180 and RKO) and fresh colorectal tumors have been individually trapped, their genomes extracted and prepared for sequencing using multiple displacement amplification (MDA). Ninety nine percent of the DNA sequences obtained mapped to a reference human genome, indicating that there was effectively no contamination of these samples from non-human sources. In addition, most of the reads are correctly paired, with a low percentage of singletons (0.17 ± 0.06%) and we obtain genome coverages approaching 90%. To achieve this high quality, our device design and process shows that amplification can be conducted in microliter volumes as long as the lysis is in sub-nanoliter volumes. Our data thus demonstrates that high quality whole genome sequencing of single cells can be achieved using a relatively simple, inexpensive and scalable device. Detection of genetic heterogeneity at the single cell level, as we have demonstrated for freshly obtained single cancer cells, could soon become available as a clinical tool to precisely match treatment with the properties of a patient's own tumor.


Assuntos
DNA de Neoplasias/genética , Genoma Humano/genética , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Sequência de DNA/instrumentação , Análise de Célula Única/instrumentação , Linhagem Celular Tumoral , Humanos , Análise de Célula Única/métodos
8.
Lab Chip ; 15(24): 4598-606, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26510401

RESUMO

In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation is challenged by the size overlap between cancer cells and the 10(6) times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells.


Assuntos
Separação Celular/instrumentação , Leucócitos/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Células Neoplásicas Circulantes/patologia , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Tamanho Celular , Desenho de Equipamento , Humanos
9.
PLoS One ; 9(3): e90783, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24595456

RESUMO

BACKGROUND: Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. METHODS: We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. FINDINGS: Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5)-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF) and proto-oncogene c-MYC. CONCLUSION: Selected anti-clonogenic compounds might be further investigated as potential adjuvants targeting melanoma stem-like cells in the combined anti-melanoma therapy, whereas selected cytotoxic but not anti-clonogenic compounds, which increased the frequency of ABCB5-positive cells and remained slow-cycling cells unaffected, might be considered as a tool to enrich cultures with cells exhibiting melanoma stem cell characteristics.


Assuntos
Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Melanoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Regulação da Expressão Gênica/genética , Humanos , Fator de Transcrição Associado à Microftalmia , Naftoquinonas/farmacologia , Proto-Oncogene Mas , Estreptonigrina/farmacologia , Toiocamicina/farmacologia
10.
Cancer Biol Ther ; 14(2): 135-45, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192276

RESUMO

Growing evidence suggests that the cancer stem cell phenotype in melanoma is dynamically regulated. Therefore, effective therapies have to target simultaneously bulk tumor cells and melanoma stem-like cells. The aim of the present study was to investigate the effects of parthenolide on heterogeneous cancer cell populations from anchorage-independent melanospheres. Cells derived from nodular melanoma specimens were grown under serum-free sphere-forming conditions. The effects of parthenolide on cellular viability, immunophenotype and self-renewing capacity were assessed with cells from dissociated melanospheres. Its penetration capacity was evaluated with intact melanospheres. In melanoma cells that survived treatment with parthenolide, a different immunophenotype than that in untreated control was found. The frequency of cells expressing the ABCB5 transporter was markedly reduced. Most importantly, melanoma cells that survived parthenolide treatment lost their self-renewing capacity. Significantly lower influence of drug on cellular viability and frequency of ABCB5-positive cells was observed in intact melanospheres. The potential clinical significance of our findings is based on the ability of parthenolide to affect both bulk and melanoma stem-like cells with clonogenic capacity and high expression of the ABCB5 transporter. Its low penetration capacity, however, may limit its action to easily accessible melanoma cells, either circulating in the blood or those in the vicinity to blood vessels within the tumor. Because of limited penetration capacity of parthenolide, this drug should be further explored as a part of multimodal therapies rather than as a stand-alone therapeutic agent.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Melanoma/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Sesquiterpenos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Esferoides Celulares , Células Tumorais Cultivadas
11.
Melanoma Res ; 22(3): 215-24, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22495670

RESUMO

Melanomas contain subsets of cancer stem-like cells with tumor-initiating capacity. The frequency of these cells in the tumor is still a topic of debate. We investigated the phenotypic plasticity of cancer cells grown as melanospheres to elucidate the influence of the microenvironment on some features of melanoma stem-like cells. Cells from surgical specimens of nodular melanoma were grown as anchorage-independent melanospheres in a stem cell medium and as adherent monolayer cultures in the presence of serum. Proliferation and viability were measured by cell counting and an acid phosphatase assay; surface marker expression was evaluated by flow cytometry, and the clonogenic potential of single cells was assessed by growth in soft agar. Patient-derived melanoma cells could be maintained in cell culture for more than 16 months when grown as melanospheres. In the presence of serum, melanospheres completely changed their growth characteristics and formed adherent monolayers. The transition from melanospheres to monolayers was accompanied by an apparent loss of clonogenic potential, an increased proliferation rate, and altered expressions of cell surface markers ABCB5, CD133, and CD49f. These changes, however, were reversible. Compared with adherent monolayer cultures, melanospheres are enriched in cells with clonogenic potential, reflecting the self-renewing capacity of cancer stem-like cells. This clonogenic potential can be lost and regained depending on the growth conditions. Our results demonstrate how easily melanoma cells change their function upon exposure to external stimuli and suggest that the frequency of melanoma stem-like cells strongly depends on the microenvironment.


Assuntos
Proliferação de Células , Melanoma/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Adesão Celular , Forma Celular , Sobrevivência Celular , Meios de Cultura/química , Meios de Cultura/metabolismo , Feminino , Citometria de Fluxo , Humanos , Masculino , Melanoma/metabolismo , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Neoplasias Cutâneas/metabolismo , Esferoides Celulares , Fatores de Tempo , Técnicas de Cultura de Tecidos , Células Tumorais Cultivadas
12.
Melanoma Res ; 20(1): 21-34, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19949351

RESUMO

Metastatic melanoma is a highly life-threatening disease. The lack of response to radiotherapy and chemotherapy highlights the critical need for novel treatments. Parthenolide, an active component of feverfew (Tanacetum parthenium), inhibits proliferation and kills various cancer cells mainly by inducing apoptosis. The aim of the study was to examine anticancer effects of parthenolide in melanoma cells in vitro. The cytotoxicity of parthenolide was tested in melanoma cell lines and melanocytes, as well as melanoma cells directly derived from a surgical excision. Adherent cell proliferation was measured by tetrazolium derivative reduction assay. Loss of the plasma membrane integrity, hypodiploid events, reactive oxygen species generation, mitochondrial membrane potential dissipation, and caspase-3 activity were assessed by flow cytometric analysis. Microscopy was used to observe morphological changes and cell detachment. Parthenolide reduced the number of viable adherent cells in melanoma cultures. Half maximal inhibitory concentration values around 4 mumol/l were determined. Cell death accompanied by mitochondrial membrane depolarization and caspase-3 activation was observed as the result of parthenolide application. Interestingly, the melanoma cells from vertical growth phase and melanocytes were less susceptible to parthenolide-induced cell death than metastatic cells when drug concentration was at least 6 mumol/l. Reactive oxygen species level was not significantly increased in melanoma cells. However, preincubation of parthenolide with the thiol nucleophile N-acetyl-cysteine protected melanoma cells from parthenolide-induced cell death suggesting the reaction with intracellular thiols as the mechanism responsible for parthenolide activity. In conclusion, the observed anticancer activity makes parthenolide an attractive drug candidate for further testing in melanoma therapy.


Assuntos
Melanoma/tratamento farmacológico , Sesquiterpenos/farmacologia , Neoplasias Cutâneas/terapia , Tanacetum parthenium/química , Acetilcisteína/farmacologia , Adulto , Animais , Antineoplásicos/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Adesão Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Interações Medicamentosas , Feminino , Citometria de Fluxo , Humanos , Masculino , Melanoma/metabolismo , Melanoma/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/antagonistas & inibidores , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
13.
Eur J Med Chem ; 45(12): 5744-51, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20974504

RESUMO

The synthesis of new polyamine derivatives containing dimeric quinoline (3a-c), cinnoline (4a-c) and phthalimide (7a-c and 8a-c) moieties is described. Three different polyamines: (1,4-bis(3-aminopropyl)piperazine (a), 4,9-dioxa-1,12-dodecanediamine (b), 3,3'-diamino-N-methyldipropylamine (c) were used as linkers. The new compounds were obtained according to known procedures. Their biological activity was assessed in vitro in a highly aggressive melanoma cell line A375. Polyamine diimides containing phthalimide moieties demonstrated no inhibitory activities against melanoma cells. Quinoline diamides were more efficient than cinnoline ones. Mainly cytostatic activity exerted as altered cell cycle profiles was observed at the concentrations causing about 50% reduction of adherent cell proliferation. Based on their structure as well as their biological activity, we assume that some of the newly synthesized compounds may act as DNA bisintercalators. This study might be useful for further designing and developing anticancer drugs with potent activities.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Poliaminas/síntese química , Poliaminas/farmacologia , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Poliaminas/química , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA