Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(17): 8283-8288, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30962385

RESUMO

Mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing proteins that are essential for oxidative phosphorylation (ATP generation). Despite their common ancestry with bacteria, the composition and structure of the human mitoribosome and its translational factors are significantly different from those of their bacterial counterparts. The mammalian mitoribosome recycling factor (RRFmt) carries a mito-specific N terminus extension (NTE), which is necessary for the function of RRFmt Here we present a 3.9-Å resolution cryo-electron microscopic (cryo-EM) structure of the human 55S mitoribosome-RRFmt complex, which reveals α-helix and loop structures for the NTE that makes multiple mito-specific interactions with functionally critical regions of the mitoribosome. These include ribosomal RNA segments that constitute the peptidyl transferase center (PTC) and those that connect PTC with the GTPase-associated center and with mitoribosomal proteins L16 and L27. Our structure reveals the presence of a tRNA in the pe/E position and a rotation of the small mitoribosomal subunit on RRFmt binding. In addition, we observe an interaction between the pe/E tRNA and a mito-specific protein, mL64. These findings help understand the unique features of mitoribosome recycling.


Assuntos
Ribossomos Mitocondriais , Proteínas Ribossômicas , Microscopia Crioeletrônica , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Humanos , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/ultraestrutura , Modelos Moleculares , Peptidil Transferases/química , Peptidil Transferases/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-33361293

RESUMO

Zinc is an essential micronutrient for mycobacteria, and its depletion induces multiple adaptive changes in cellular physiology, the most remarkable of which are remodeling and hibernation of ribosomes. Ribosome remodeling, induced upon relatively moderate depletion of zinc, involves replacement of multiple ribosomal proteins containing the zinc-binding CXXC motif (called C+ r proteins) by their motif-free C- paralogs. Severe zinc depletion induces binding of mycobacterial protein Y (Mpy) to the 70S C- ribosome, thereby stabilizing the ribosome in an inactive state that is also resistant to kanamycin and streptomycin. Because the Mpy binding region on the ribosome is proximal to the binding pocket of spectinamides (Spa), the preclinical drug candidates for tuberculosis, we addressed the impact of remodeling and hibernation of ribosomes on Spa sensitivity. We report here that while Mpy binding has no significant effect on Spa sensitivity to the ribosome, replacement of S14C+ with its C- counterpart reduces the binding affinity of the drug by ∼2-fold, causing increased Spa tolerance in Mycobacterium smegmatis and Mycobacterium tuberculosis cells harboring the C- ribosome. The altered interaction between Spa and ribosomes likely results from new contact points for D67 and R83 residues of S14C- with U1138 and C1184 of 16S rRNA helix 34, respectively. Given that M. tuberculosis induces ribosome remodeling during progression from the acute to chronic phase of lung infection, our findings highlight new considerations in the development of Spa as effective drugs against tuberculosis.


Assuntos
Preparações Farmacêuticas , Zinco , RNA Ribossômico 16S , Proteínas Ribossômicas/genética , Ribossomos/genética , Fatores de Transcrição
3.
Microbiology (Reading) ; 167(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33555244

RESUMO

Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.


Assuntos
Mycobacterium/fisiologia , Tuberculose/microbiologia , Antituberculosos/metabolismo , Antituberculosos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Humanos , Mycobacterium/efeitos dos fármacos , Mycobacterium/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Tuberculose/tratamento farmacológico , Zinco/deficiência
4.
Proc Natl Acad Sci U S A ; 115(32): 8191-8196, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038002

RESUMO

Bacteria respond to zinc starvation by replacing ribosomal proteins that have the zinc-binding CXXC motif (C+) with their zinc-free (C-) paralogues. Consequences of this process beyond zinc homeostasis are unknown. Here, we show that the C- ribosome in Mycobacterium smegmatis is the exclusive target of a bacterial protein Y homolog, referred to as mycobacterial-specific protein Y (MPY), which binds to the decoding region of the 30S subunit, thereby inactivating the ribosome. MPY binding is dependent on another mycobacterial protein, MPY recruitment factor (MRF), which is induced on zinc depletion, and interacts with C- ribosomes. MPY binding confers structural stability to C- ribosomes, promoting survival of growth-arrested cells under zinc-limiting conditions. Binding of MPY also has direct influence on the dynamics of aminoglycoside-binding pockets of the C- ribosome to inhibit binding of these antibiotics. Together, our data suggest that zinc limitation leads to ribosome hibernation and aminoglycoside resistance in mycobacteria. Furthermore, our observation of the expression of the proteins of C- ribosomes in Mycobacterium tuberculosis in a mouse model of infection suggests that ribosome hibernation could be relevant in our understanding of persistence and drug tolerance of the pathogen encountered during chemotherapy of TB.


Assuntos
Antibióticos Antituberculose/farmacologia , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/fisiologia , Proteínas Ribossômicas/metabolismo , Tuberculose/tratamento farmacológico , Zinco/deficiência , Aminoglicosídeos/farmacologia , Animais , Microscopia Crioeletrônica , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/fisiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Tuberculose/microbiologia , Tuberculose/patologia
6.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915643

RESUMO

HflX is known to rescue stalled ribosomes and is implicated in antibiotic resistance in several bacteria. Here we present several high-resolution cryo-EM structures of mycobacterial HflX in complex with the ribosome and its 50S subunit, with and without antibiotics. These structures reveal a distinct mechanism for HflX-mediated ribosome splitting and antibiotic resistance in mycobacteria. In addition to dissociating ribosome into two subunits, mycobacterial HflX mediates persistent disordering of multiple 23S rRNA helices to generate an inactive pool of 50S subunits. Mycobacterial HflX also acts as an anti-association factor by binding to pre-dissociated 50S subunits. A mycobacteria-specific insertion in HflX reaches further into the peptidyl transferase center. The position of this insertion overlaps with ribosome-bound macrolides or lincosamide class of antibiotics. The extended conformation of insertion seen in the absence of these antibiotics retracts and adjusts around the bound antibiotics instead of physically displacing them. It therefore likely imparts antibiotic resistance by sequestration of the antibiotic-bound inactive 50S subunits.

7.
bioRxiv ; 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37034768

RESUMO

Treatment of tuberculosis continues to be challenging due to the widespread latent form of the disease and the emergence of antibiotic-resistant strains of the pathogen, Mycobacterium tuberculosis. Bacterial ribosomes are a common and effective target for antibiotics. Several second line anti-tuberculosis drugs, e.g. kanamycin, amikacin, and capreomycin, target ribosomal RNA to inhibit protein synthesis. However, M. tuberculosis can acquire resistance to these drugs, emphasizing the need to identify new drug targets. Previous cryo-EM structures of the M. tuberculosis and M. smegmatis ribosomes identified two novel ribosomal proteins, bS22 and bL37, in the vicinity of two crucial drug-binding sites: the mRNA-decoding center on the small (30S), and the peptidyl-transferase center on the large (50S) ribosomal subunits, respectively. The functional significance of these two small proteins is unknown. In this study, we observe that an M. smegmatis strain lacking the bs22 gene shows enhanced susceptibility to kanamycin compared to the wild-type strain. Cryo-EM structures of the ribosomes lacking bS22 in the presence and absence of kanamycin suggest a direct role of bS22 in modulating the 16S rRNA kanamycin-binding site. Our structures suggest that amino-acid residue Lys-16 of bS22 interacts directly with the phosphate backbone of helix 44 of 16S rRNA to influence the micro-configuration of the kanamycin-binding pocket. Our analysis shows that similar interactions occur between eukaryotic homologues of bS22, and their corresponding rRNAs, pointing to a common mechanism of aminoglycoside resistance in higher organisms.

8.
Nat Commun ; 14(1): 6961, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907464

RESUMO

The spirochete bacterial pathogen Borrelia (Borreliella) burgdorferi (Bbu) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. Here we present the structure of the Bbu 70S ribosome obtained by single particle cryo-electron microscopy at 2.9 Å resolution, revealing a bound hibernation promotion factor protein and two genetically non-annotated ribosomal proteins bS22 and bL38. The ribosomal protein uL30 in Bbu has an N-terminal α-helical extension, partly resembling the mycobacterial bL37 protein, suggesting evolution of bL37 and a shorter uL30 from a longer uL30 protein. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energy predictions for antibiotics reflect subtle distinctions in antibiotic-binding sites in the Bbu ribosome. Discovery of these features in the Bbu ribosome may enable better ribosome-targeted antibiotic design for Lyme disease treatment.


Assuntos
Proteínas de Bactérias , Doença de Lyme , Animais , Humanos , Microscopia Crioeletrônica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ribossomos/metabolismo , Proteínas Ribossômicas/metabolismo , Antibacterianos/metabolismo , Mamíferos/metabolismo
9.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131667

RESUMO

The spirochete bacterial pathogen Borrelia ( Borreliella) burgdorferi ( Bbu ) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. We determined the structure of the Bbu 70S ribosome by single particle cryo-electron microscopy (cryo-EM) at a resolution of 2.9 Å, revealing its distinctive features. In contrast to a previous study suggesting that the single hibernation promoting factor protein present in Bbu (bbHPF) may not bind to its ribosome, our structure reveals a clear density for bbHPF bound to the decoding center of the small ribosomal 30S subunit. The 30S subunit has a non-annotated ribosomal protein, bS22, that has been found only in mycobacteria and Bacteroidetes so far. The protein bL38, recently discovered in Bacteroidetes, is also present in the Bbu large 50S ribosomal subunit. The protein bL37, previously seen only in mycobacterial ribosomes, is replaced by an N-terminal α-helical extension of uL30, suggesting that the two bacterial ribosomal proteins uL30 and bL37 may have evolved from one longer uL30 protein. The longer uL30 protein interacts with both the 23S rRNA and the 5S rRNA, is near the peptidyl transferase center (PTC), and could impart greater stability to this region. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energies are predicted for antibiotics, bound to the decoding center or PTC and are in clinical use for Lyme disease, that account for subtle distinctions in antibiotic-binding regions in the Bbu ribosome structure. Besides revealing unanticipated structural and compositional features for the Bbu ribosome, our study thus provides groundwork to enable ribosome-targeted antibiotic design for more effective treatment of Lyme disease.

10.
Methods Mol Biol ; 2314: 151-166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235651

RESUMO

Zinc starvation in Mycobacterium smegmatis and Mycobacterium tuberculosis induces ribosome remodeling and hibernation. Remodeling involves replacement of C+ ribosomal (r-) proteins containing the zinc-binding CXXC motif with their C- paralogues without the motif. Hibernation is characterized by binding of mycobacterial-specific protein Y (Mpy) to 70S C- ribosomes, stabilizing the ribosome in an inactive state that is also resistant to kanamycin and streptomycin. We observed that ribosome remodeling and hibernation occur at two different concentrations of cellular zinc. Here, we describe the methods to purify hibernating and active forms of C- ribosomes from zinc-starved mycobacteria, along with purification of C+ ribosomes from zinc-rich mycobacterial cells. In vitro analysis of these distinct types of ribosomes will facilitate screening of small molecule inhibitors of ribosome hibernation for improved therapeutics against mycobacterial infections.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/crescimento & desenvolvimento , Polirribossomos/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Zinco/deficiência , Farmacorresistência Bacteriana , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , RNA Ribossômico/metabolismo
11.
iScience ; 12: 76-86, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30677741

RESUMO

The human mitochondrial translational initiation factor 3 (IF3mt) carries mitochondrial-specific amino acid extensions at both its N and C termini (N- and C-terminal extensions [NTE and CTE, respectively]), when compared with its eubacterial counterpart. Here we present 3.3- to 3.5-Å-resolution cryoelectron microscopic structures of the mammalian 28S mitoribosomal subunit in complex with human IF3mt. Unique contacts observed between the 28S subunit and N-terminal domain of IF3mt explain its unusually high affinity for the 28S subunit, whereas the position of the mito-specific NTE suggests NTE's role in binding of initiator tRNA to the 28S subunit. The location of the C-terminal domain (CTD) clarifies its anti-association activity, whereas the orientation of the mito-specific CTE provides a mechanistic explanation for its role in destabilizing initiator tRNA in the absence of mRNA. Furthermore, our structure hints at a possible role of the CTD in recruiting leaderless mRNAs for translation initiation. Our findings highlight unique features of IF3mt in mitochondrial translation initiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA