Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
BMC Cancer ; 24(1): 744, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890593

RESUMO

BACKGROUND: Tumor hypoxia is associated with prostate cancer (PCa) treatment resistance and poor prognosis. Pimonidazole (PIMO) is an investigational hypoxia probe used in clinical trials. A better understanding of the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia is needed for future clinical application. Here, we investigated the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia in patients with localized PCa, in order to apply PIMO as a prognostic tool and to identify potential biomarkers for future clinical translation. METHODS: A total of 39 patients with localized PCa were recruited and administered oral PIMO before undergoing radical prostatectomy (RadP). Immunohistochemical staining for PIMO was performed on 37 prostatectomy specimens with staining patterns evaluated and clinical association analyzed. Whole genome bisulfite sequencing was performed using laser-capture of microdissected specimen sections comparing PIMO positive and negative tumor areas. A hypoxia related methylation molecular signature was generated by integrating the differentially methylated regions with previously established RNA-seq datasets. RESULTS: Three PIMO staining patterns were distinguished: diffuse, focal, and comedo-like. The comedo-like staining pattern was more commonly associated with adverse pathology. PIMO-defined hypoxia intensity was positively correlated with advanced pathologic stage, tumor invasion, and cribriform and intraductal carcinoma morphology. The generated DNA methylation signature was found to be a robust hypoxia biomarker, which could risk-stratify PCa patients across multiple clinical datasets, as well as be applicable in other cancer types. CONCLUSIONS: Oral PIMO unveiled clinicopathologic features of disease aggressiveness in localized PCa. The generated DNA methylation signature is a novel and robust hypoxia biomarker that has the potential for future clinical translation.


Assuntos
Metilação de DNA , Epigênese Genética , Nitroimidazóis , Prostatectomia , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/metabolismo , Idoso , Pessoa de Meia-Idade , Hipóxia Tumoral/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Administração Oral
2.
J Immunol ; 208(12): 2702-2712, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667842

RESUMO

CD8+ T cell proliferation and differentiation into effector and memory states are high-energy processes associated with changes in cellular metabolism. CD28-mediated costimulation of T cells activates the PI3K/AKT/mammalian target of rapamycin signaling pathway and induces eukaryotic translation initiation factor 4E-dependent translation through the derepression by 4E-BP1 and 4E-BP2. In this study, we demonstrate that 4E-BP1/2 proteins are required for optimum proliferation of mouse CD8+ T cells and the development of an antiviral effector function. We show that translation of genes encoding mitochondrial biogenesis is impaired in T cells derived from 4E-BP1/2-deficient mice. Our findings demonstrate an unanticipated role for 4E-BPs in regulating a metabolic program that is required for cell growth and biosynthesis during the early stages of CD8+ T cell expansion.


Assuntos
Fatores de Iniciação em Eucariotos , Fosfoproteínas , Animais , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Mamíferos/genética , Camundongos , Biogênese de Organelas , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Biossíntese de Proteínas
3.
J Biol Chem ; 296: 100505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33675747

RESUMO

Low levels of oxygen (hypoxia) occurs in many (patho)physiological situations. Adaptation to hypoxia is in part mediated by proteins expressed in the extracellular space that mature in the endoplasmic reticulum (ER) prior to traversing the secretory pathway. The majority of such ER cargo proteins require disulfide bonds for structural stability. Disulfide bonds are formed co- and posttranslationally in a redox relay that requires a terminal electron acceptor such as oxygen. We have previously demonstrated that some ER cargo proteins such as low-density lipoprotein receptor (LDLR) and influenza hemagglutinin (Flu-HA) are unable to complete disulfide bond formation in the absence of oxygen, limiting their ability to pass ER quality control and their ultimate expression. Here, using radioactive pulse-chase immunoprecipitation analysis, we demonstrate that hypoxia-induced ER cargo proteins such as carbonic anhydrase 9 (CA9) and vascular endothelial growth factor A (VEGF-A) complete disulfide bond formation and mature with similar kinetics under hypoxia and normoxia. A global in silico analysis of ER cargo revealed that hypoxia-induced proteins on average contain fewer free cysteines and shorter-range disulfide bonds in comparison to other ER cargo proteins. These data demonstrate the existence of alternative electron acceptors to oxygen for disulfide bond formation in cellulo. However, the ability of different proteins to utilize an oxygen-independent pathway for disulfide bond formation varies widely, contributing to differential gene expression in hypoxia. The superior ability of hypoxia-induced proteins such as VEGF-A and CA9 to mature in hypoxia may be conferred by a simpler disulfide architecture.


Assuntos
Antígenos de Neoplasias/química , Anidrase Carbônica IX/química , Hipóxia Celular , Dissulfetos/química , Retículo Endoplasmático/metabolismo , Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Dissulfetos/metabolismo , Células HeLa , Humanos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Int J Cancer ; 143(5): 1017-1028, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29417588

RESUMO

Cervical cancer is the fourth most commonly diagnosed cancer and the fourth leading cause of cancer death in women worldwide. Approximately half of cervical cancer patients present with locally advanced disease, for which surgery is not an option. These cases are nonetheless potentially curable with radiotherapy and cisplatin chemotherapy. Unfortunately, some tumours are resistant to treatment, and lymph node and distant recurrences are major problems in patients with advanced disease at diagnosis. New targeted treatments that can overcome treatment resistance and reduce metastases are urgently needed. The CXCL12/CXCR4 chemokine pathway is ubiquitously expressed in many normal tissues and cancers, including cervical cancer. Emerging evidence indicates that it plays a central role in cervical cancer pathogenesis, malignant progression, the development of metastases and radiation treatment response. Pre-clinical studies of standard-of-care fractionated radiotherapy and concurrent weekly cisplatin plus the CXCR4 inhibitor Plerixafor (AMD3100) in patient-derived orthotopic cervical cancer xenografts have shown improved primary tumour response and reduced lymph node metastases with no increase in early or late side effects. These studies have pointed the way forward to future clinical trials of radiotherapy/cisplatin plus Plerixafor or other newly emerging CXCL12 or CXCR4 inhibitors in women with cervical cancer.


Assuntos
Quimiocina CXCL12/antagonistas & inibidores , Células Mieloides/patologia , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Receptores CXCR4/antagonistas & inibidores , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/radioterapia , Antineoplásicos/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células Mieloides/efeitos dos fármacos , Células Mieloides/efeitos da radiação , Radioterapia , Neoplasias do Colo do Útero/patologia
5.
Proc Natl Acad Sci U S A ; 112(34): 10774-9, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261340

RESUMO

Efficient apoptotic cell clearance and induction of immunologic tolerance is a critical mechanism preventing autoimmunity and associated pathology. Our laboratory has reported that apoptotic cells induce tolerance by a mechanism dependent on the tryptophan catabolizing enzyme indoleamine 2,3 dioxygenase 1 (IDO1) in splenic macrophages (MΦ). The metabolic-stress sensing protein kinase GCN2 is a primary downstream effector of IDO1; thus, we tested its role in apoptotic cell-driven immune suppression. In vitro, expression of IDO1 in MΦs significantly enhanced apoptotic cell-driven IL-10 and suppressed IL-12 production in a GCN2-dependent mechanism. Suppression of IL-12 protein production was due to attenuation of IL-12 mRNA association with polyribosomes inhibiting translation while IL-10 mRNA association with polyribosomes was not affected. In vivo, apoptotic cell challenge drove a rapid, GCN2-dependent stress response in splenic MΦs with increased IL-10 and TGF-ß production, whereas myeloid-specific deletion of GCN2 abrogated regulatory cytokine production with provocation of inflammatory T-cell responses to apoptotic cell antigens and failure of long-tolerance induction. Consistent with a role in prevention of apoptotic cell driven autoreactivity, myeloid deletion of GCN2 in lupus-prone mice resulted in increased immune cell activation, humoral autoimmunity, renal pathology, and mortality. In contrast, activation of GCN2 with an agonist significantly reduced anti-DNA autoantibodies and protected mice from disease. Thus, this study implicates a key role for GCN2 signals in regulating the tolerogenic response to apoptotic cells and limiting autoimmunity.


Assuntos
Apoptose/fisiologia , Autoimunidade/fisiologia , Tolerância Imunológica/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Aminoácidos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Citocinas/biossíntese , Citocinas/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Inflamação , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Piperidinas/farmacologia , Proteínas Serina-Treonina Quinases/deficiência , Quinazolinonas/farmacologia , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 110(12): 4622-7, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23471998

RESUMO

Hypoxia is a common feature of tumors and an important contributor to malignancy and treatment resistance. The ability of tumor cells to survive hypoxic stress is mediated in part by hypoxia-inducible factor (HIF)-dependent transcriptional responses. More severe hypoxia activates endoplasmatic reticulum stress responses, including the double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α (eIF2α)-dependent arm of the unfolded protein response (UPR). Although several studies implicate important roles for HIF and UPR in adaption to hypoxia, their importance for hypoxic cells responsible for therapy resistance in tumors is unknown. By using isogenic models, we find that HIF and eIF2α signaling contribute to the survival of hypoxic cells in vitro and in vivo. However, the eIF2α-dependent arm of the UPR is uniquely required for the survival of a subset of hypoxic cells that determine tumor radioresistance. We demonstrate that eIF2α signaling induces uptake of cysteine, glutathione synthesis, and protection against reactive oxygen species produced during periods of cycling hypoxia. Together these data imply that eIF2α signaling is a critical contributor to the tolerance of therapy-resistant cells that arise as a consequence of transient changes in oxygenation in solid tumors and thus a therapeutic target in curative treatments for solid cancers.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Glutationa/biossíntese , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/genética , Glutationa/genética , Humanos , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/terapia , Transdução de Sinais/genética , Transplante Heterólogo , eIF-2 Quinase/genética
7.
J Enzyme Inhib Med Chem ; 30(5): 689-721, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25347767

RESUMO

The hypoxic areas of solid cancers represent a negative prognostic factor irrespective of which treatment modality is chosen for the patient. Still, after almost 80 years of focus on the problems created by hypoxia in solid tumours, we still largely lack methods to deal efficiently with these treatment-resistant cells. The consequences of this lack may be serious for many patients: Not only is there a negative correlation between the hypoxic fraction in tumours and the outcome of radiotherapy as well as many types of chemotherapy, a correlation has been shown between the hypoxic fraction in tumours and cancer metastasis. Thus, on a fundamental basis the great variety of problems related to hypoxia in cancer treatment has to do with the broad range of functions oxygen (and lack of oxygen) have in cells and tissues. Therefore, activation-deactivation of oxygen-regulated cascades related to metabolism or external signalling are important areas for the identification of mechanisms as potential targets for hypoxia-specific treatment. Also the chemistry related to reactive oxygen radicals (ROS) and the biological handling of ROS are part of the problem complex. The problem is further complicated by the great variety in oxygen concentrations found in tissues. For tumour hypoxia to be used as a marker for individualisation of treatment there is a need for non-invasive methods to measure oxygen routinely in patient tumours. A large-scale collaborative EU-financed project 2009-2014 denoted METOXIA has studied all the mentioned aspects of hypoxia with the aim of selecting potential targets for new hypoxia-specific therapy and develop the first stage of tests for this therapy. A new non-invasive PET-imaging method based on the 2-nitroimidazole [(18)F]-HX4 was found to be promising in a clinical trial on NSCLC patients. New preclinical models for testing of the metastatic potential of cells were developed, both in vitro (2D as well as 3D models) and in mice (orthotopic grafting). Low density quantitative real-time polymerase chain reaction (qPCR)-based assays were developed measuring multiple hypoxia-responsive markers in parallel to identify tumour hypoxia-related patterns of gene expression. As possible targets for new therapy two main regulatory cascades were prioritised: The hypoxia-inducible-factor (HIF)-regulated cascades operating at moderate to weak hypoxia (<1% O(2)), and the unfolded protein response (UPR) activated by endoplasmatic reticulum (ER) stress and operating at more severe hypoxia (<0.2%). The prioritised targets were the HIF-regulated proteins carbonic anhydrase IX (CAIX), the lactate transporter MCT4 and the PERK/eIF2α/ATF4-arm of the UPR. The METOXIA project has developed patented compounds targeting CAIX with a preclinical documented effect. Since hypoxia-specific treatments alone are not curative they will have to be combined with traditional anti-cancer therapy to eradicate the aerobic cancer cell population as well.


Assuntos
Descoberta de Drogas , Neoplasias/tratamento farmacológico , Animais , Hipóxia Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/patologia , Neoplasias/patologia , Relação Estrutura-Atividade
8.
Cancer Res Commun ; 4(3): 765-784, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421883

RESUMO

The effect of targeted therapeutics on anticancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Because ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T-cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5, Mafg, and Zbtb7a. This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development toward monocytic lineage cells. In vivo, we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveal transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off-target effects of dabrafenib. SIGNIFICANCE: An important, but poorly understood, aspect of targeted therapeutics for cancer is the effect on antitumor immune responses. This article shows that off-target effects of dabrafenib activating the kinase GCN2 impact MDSC development and function reducing PMN-MDSCs in vitro and in vivo. This has important implications for our understanding of how this BRAF inhibitor impacts tumor growth and provides novel therapeutic target and combination possibilities.


Assuntos
Imidazóis , Células Supressoras Mieloides , Oximas , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
9.
Sci Adv ; 9(47): eadj6409, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37992163

RESUMO

Poor oxygenation (hypoxia) is a common spatially heterogeneous feature of human tumors. Biological responses to tumor hypoxia are orchestrated by the decreased activity of oxygen-dependent enzymes. The affinity of these enzymes for oxygen positions them along a continuum of oxygen sensing that defines their roles in launching reactive and adaptive cellular responses. These responses encompass regulation of all steps in the central dogma, with rapid perturbation of the metabolome and proteome followed by more persistent reprogramming of the transcriptome and epigenome. Core hypoxia response genes and pathways are commonly regulated at multiple inflection points, fine-tuning the dependencies on oxygen concentration and hypoxia duration. Ultimately, shifts in the activity of oxygen-sensing enzymes directly or indirectly endow cells with intrinsic hypoxia tolerance and drive processes that are associated with aggressive phenotypes in cancer including angiogenesis, migration, invasion, immune evasion, epithelial mesenchymal transition, and stemness.


Assuntos
Neoplasias , Hipóxia Tumoral , Humanos , Neoplasias/metabolismo , Hipóxia , Oxigênio/metabolismo , Fenótipo
10.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645997

RESUMO

The effect of targeted therapeutics on anti-cancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Since ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5 , Mafg , and Zbtb7a . This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development towards monocytic lineage cells. In vivo , we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveals transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off target effects of dabrafenib.

11.
Commun Biol ; 6(1): 538, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202533

RESUMO

During cancer development, tumor cells acquire changes that enable them to invade surrounding tissues and seed metastasis at distant sites. These changes contribute to the aggressiveness of metastatic cancer and interfere with success of therapy. Our comprehensive analysis of "matched" pairs of HNSCC lines derived from primary tumors and corresponding metastatic sites identified several components of Notch3 signaling that are differentially expressed and/or altered in metastatic lines and confer a dependency on this pathway. These components were also shown to be differentially expressed between early and late stages of tumors in a TMA constructed from over 200 HNSCC patients. Finally, we show that suppression of Notch3 improves survival in mice in both subcutaneous and orthotopic models of metastatic HNSCC. Novel treatments targeting components of this pathway may prove effective in targeting metastatic HNSCC cells alone or in combination with conventional therapies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Animais , Camundongos , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos
12.
Nat Commun ; 14(1): 4313, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463901

RESUMO

Metastatic breast-cancer is a major cause of death in women worldwide, yet the relationship between oncogenic drivers that promote metastatic versus primary cancer is still contentious. To elucidate this relationship in treatment-naive animals, we hereby describe mammary-specific transposon-mutagenesis screens in female mice together with loss-of-function Rb, which is frequently inactivated in breast-cancer. We report gene-centric common insertion-sites (gCIS) that are enriched in primary-tumors, in metastases or shared by both compartments. Shared-gCIS comprise a major MET-RAS network, whereas metastasis-gCIS form three additional hubs: Rho-signaling, Ubiquitination and RNA-processing. Pathway analysis of four clinical cohorts with paired primary-tumors and metastases reveals similar organization in human breast-cancer with subtype-specific shared-drivers (e.g. RB1-loss, TP53-loss, high MET, RAS, ER), primary-enriched (EGFR, TGFß and STAT3) and metastasis-enriched (RHO, PI3K) oncogenic signaling. Inhibitors of RB1-deficiency or MET plus RHO-signaling cooperate to block cell migration and drive tumor cell-death. Thus, targeting shared- and metastasis- but not primary-enriched derivers offers a rational avenue to prevent metastatic breast-cancer.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Animais , Camundongos , Neoplasias da Mama/patologia , Transdução de Sinais , Metástase Neoplásica
13.
Nat Commun ; 13(1): 116, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013227

RESUMO

Glioblastoma is an aggressive form of brain cancer with well-established patterns of intra-tumoral heterogeneity implicated in treatment resistance and progression. While regional and single cell transcriptomic variations of glioblastoma have been recently resolved, downstream phenotype-level proteomic programs have yet to be assigned across glioblastoma's hallmark histomorphologic niches. Here, we leverage mass spectrometry to spatially align abundance levels of 4,794 proteins to distinct histologic patterns across 20 patients and propose diverse molecular programs operational within these regional tumor compartments. Using machine learning, we overlay concordant transcriptional information, and define two distinct proteogenomic programs, MYC- and KRAS-axis hereon, that cooperate with hypoxia to produce a tri-dimensional model of intra-tumoral heterogeneity. Moreover, we highlight differential drug sensitivities and relative chemoresistance in glioblastoma cell lines with enhanced KRAS programs. Importantly, these pharmacological differences are less pronounced in transcriptional glioblastoma subgroups suggesting that this model may provide insights for targeting heterogeneity and overcoming therapy resistance.


Assuntos
Neoplasias Encefálicas/genética , Heterogeneidade Genética , Glioblastoma/genética , Hipóxia/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Estudos de Coortes , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Humanos , Hipóxia/diagnóstico , Hipóxia/tratamento farmacológico , Hipóxia/mortalidade , Microdissecção e Captura a Laser , Aprendizado de Máquina , Modelos Genéticos , Proteínas de Neoplasias/classificação , Proteínas de Neoplasias/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Análise de Sobrevida , Transcriptoma
14.
Clin Cancer Res ; 28(24): 5263-5271, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037303

RESUMO

PURPOSE: Tumor hypoxia is associated with poor response to radiation (RT). We previously discovered a novel mechanism of metformin: enhancing tumor RT response by decreasing tumor hypoxia. We hypothesized that metformin would decrease tumor hypoxia and improve cervical cancer response to RT. PATIENTS AND METHODS: A window-of-opportunity, phase II randomized trial was performed in stage IB-IVA cervical cancer. Patients underwent screening positron emission tomography (PET) imaging with hypoxia tracer fluoroazomycin arabinoside (FAZA). Only patients with FAZA uptake (hypoxic tumor) were included and randomized 2:1 to receive metformin in combination with chemoRT or chemoRT alone. A second FAZA-PET/CT scan was performed after 1 week of metformin or no intervention (control). The primary endpoint was a change in fractional hypoxic volume (FHV) between FAZA-PET scans, compared using the Wilcoxon signed-rank test. The study was closed early due to FAZA availability and the COVID-19 pandemic. RESULTS: Of the 20 consented patients, 6 were excluded due to no FAZA uptake and 1 withdrew. FHV of 10 patients in the metformin arm decreased by an average of 10.2% (44.4%-34.2%) ± SD 16.9% after 1 week of metformin, compared with an average increase of 4.7% (29.1%-33.8%) ± 11.5% for the 3 controls (P = 0.027). Those with FHV reduction after metformin had significantly lower MATE2 expression. With a median follow-up of 2.8 years, the 2-year disease-free survival was 67% for the metformin arm versus 33% for controls (P = 0.09). CONCLUSIONS: Metformin decreased cervical tumor hypoxia in this trial that selected for patients with hypoxic tumor. See related commentary by Lyng et al., p. 5233.


Assuntos
COVID-19 , Metformina , Nitroimidazóis , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Metformina/uso terapêutico , Pandemias , Tomografia por Emissão de Pósitrons/métodos , Hipóxia , Compostos Radiofarmacêuticos
15.
Cancer Res Commun ; 2(5): 293-306, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36875717

RESUMO

Drug repurposing is an attractive option for oncology drug development. Itraconazole is an antifungal ergosterol synthesis inhibitor that has pleiotropic actions including cholesterol antagonism, inhibition of Hedgehog and mTOR pathways. We tested a panel of 28 epithelial ovarian cancer (EOC) cell lines with itraconazole to define its spectrum of activity. To identify synthetic lethality in combination with itraconazole, a whole-genome drop-out genome-scale clustered regularly interspaced short palindromic repeats sensitivity screen in two cell lines (TOV1946 and OVCAR5) was performed. On this basis, we conducted a phase I dose-escalation study assessing the combination of itraconazole and hydroxychloroquine in patients with platinum refractory EOC (NCT03081702). We identified a wide spectrum of sensitivity to itraconazole across the EOC cell lines. Pathway analysis showed significant involvement of lysosomal compartments, the trans-golgi network and late endosomes/lysosomes; similar pathways are phenocopied by the autophagy inhibitor, chloroquine. We then demonstrated that the combination of itraconazole and chloroquine displayed Bliss defined synergy in EOC cancer cell lines. Furthermore, there was an association of cytotoxic synergy with the ability to induce functional lysosome dysfunction, by chloroquine. Within the clinical trial, 11 patients received at least one cycle of itraconazole and hydroxychloroquine. Treatment was safe and feasible with the recommended phase II dose of 300 and 600 mg twice daily, respectively. No objective responses were detected. Pharmacodynamic measurements on serial biopsies demonstrated limited pharmacodynamic impact. In vitro, itraconazole and chloroquine have synergistic activity and exert a potent antitumor effect by affecting lysosomal function. The drug combination had no clinical antitumor activity in dose escalation. Significance: The combination of the antifungal drug itraconazole with antimalarial drug hydroxychloroquine leads to a cytotoxic lysosomal dysfunction, supporting the rational for further research on lysosomal targeting in ovarian cancer.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Itraconazol/farmacologia , Hidroxicloroquina/farmacologia , Antifúngicos/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Reposicionamento de Medicamentos , Antineoplásicos/farmacologia , Cloroquina/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Lisossomos , Homeostase
16.
Cancers (Basel) ; 13(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671134

RESUMO

BACKGROUND: Aberrant androgen receptor (AR) signaling is a major driver of castration-resistant prostate cancer (CRPC). Tumor hypoxia increases AR signaling and is associated with treatment resistance in prostate cancer. Heat shock protein 27 (Hsp27) is a molecular chaperone that is activated in response to heat shock and hypoxia. Hsp27 has previously been reported to facilitate AR nuclear translocation in a p38 mitogen-activated protein kinase (MAPK) dependent manner in castration-sensitive prostate cancer cell lines. Here, we evaluated the potential for inhibiting p38 MAPK/Hsp27 mediated AR signaling under normoxia and hypoxia in experimental models of CRPC. METHODS: We inhibited p38 MAPK with SB203580 in prostate cancer cell lines and measured Hsp27 phosphorylation, AR activity, cell proliferation, and clonogenicity under normoxia and hypoxia. AR activity was measured using an androgen response element driven reporter assay and qPCR to measure expression of AR target genes. Xenograft-bearing mice were treated with SB203580 to measure tumor growth and serum prostate specific antigen (PSA). RESULTS: Our results indicate that p38 MAPK and Hsp27 are activated under normoxia and hypoxia in response to androgens in CRPC cells. p38 MAPK inhibition diminished Hsp27 activation and the hypoxia-mediated increase in AR activity. Additionally, inhibition of p38 MAPK activity decreased proliferation and survival of CRPC cells in vitro and prolonged the survival of tumor-bearing mice. CONCLUSIONS: These results suggest that p38 MAPK inhibition may represent a therapeutic strategy to disrupt AR signaling in the heterogeneous CRPC tumor microenvironment.

17.
Int J Radiat Oncol Biol Phys ; 110(3): 656-666, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33440225

RESUMO

PURPOSE: To evaluate the 15-year impact of a transdisciplinary research training program for graduate students, postdoctoral fellows, and clinical trainees focused on radiation science, entitled Strategic Training in Transdisciplinary Radiation Science for the 21st Century (STARS21) with a primary objective to build capacity in radiation research. METHODS AND MATERIALS: Alumni (n = 128) and mentors (n = 41) who participated in STARS21 between 2003 and 2018 were sent an anonymized online survey designed to evaluate the program. Twelve alumni and 7 mentors also volunteered to participate in semistructured interviews. The transcribed interviews were coded and analyzed using NVivo12-Pro software. Alumni employment and publications were assessed from program records and by web-based search queries. RESULTS: Alumni are located in 11 countries, and nearly 90% are employed in a research-oriented career and continue to publish in radiation medicine- or cancer-related fields. Of those invited, 46 alumni (36%) and 12 mentors (29%) completed the online survey. Approximately 87% of alumni valued interdisciplinary collaboration, and 80% indicated that STARS21 had encouraged them to pursue such collaborations. Alumni emphasized that STARS21 assisted their career development, and the majority of alumni and mentors would recommend STARS21 to other trainees (4.48 and 4.58, respectively; 5 = strongly agree). The time invested in the program was perceived by mentors as worthwhile for the knowledge and skills gained by trainees (4.67; 5 = strongly agree), and 64% of mentors indicated that these benefits were associated with improved trainee research productivity. From the alumni and mentor perspectives, the valuable skills acquired from STARS21 included scientific communication (85% and 83%, respectively) and networking (83% and 92%, respectively). CONCLUSIONS: STARS21 is an innovative research training program that promotes interdisciplinary collaboration in radiation medicine research, which is valued by alumni and mentor respondents. Alumni can acquire important skill sets for career development, with a large proportion of alumni currently engaged in radiation research around the world.


Assuntos
Pesquisa Biomédica/educação , Pesquisadores/educação , Humanos , Mentores , Avaliação de Programas e Projetos de Saúde , Inquéritos e Questionários
18.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962950

RESUMO

There is an urgent need to identify vulnerabilities in pancreatic ductal adenocarcinoma (PDAC). PDAC cells acquire metabolic changes that augment NADPH production and cytosolic redox homeostasis. Here, we show that high NADPH levels drive activity of NADPH oxidase 4 (NOX4) expressed in the endoplasmic reticulum (ER) membrane. NOX4 produces H2O2 metabolized by peroxiredoxin 4 (PRDX4) in the ER lumen. Using functional genomics and subsequent in vitro and in vivo validations, we find that PDAC cell lines with high NADPH levels are dependent on PRDX4 for their growth and survival. PRDX4 addiction is associated with increased reactive oxygen species, a DNA-PKcs-governed DNA damage response and radiosensitivity, which can be rescued by depletion of NOX4 or NADPH. Hence, this study has identified NOX4 as a protein that paradoxically converts the reducing power of the cytosol to an ER-specific oxidative stress vulnerability in PDAC that may be therapeutically exploited by targeting PRDX4.


Assuntos
Peróxido de Hidrogênio , Neoplasias Pancreáticas , Retículo Endoplasmático/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , NADP/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Oxirredução , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Clin Cancer Res ; 27(8): 2340-2351, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33542074

RESUMO

PURPOSE: Although enzalutamide (ENZ) has been widely used to treat de novo or castration-resistant metastatic prostate cancer, resistance develops and disease progression is ultimately inevitable. There are currently no approved targeted drugs to specifically delay or overcome ENZ resistance. EXPERIMENTAL DESIGN: We selected several ENZ-resistant cell lines that replicated clinical characteristics of the majority of patients with ENZ-resistant disease. A high-throughput pharmacologic screen was utilized to identify compounds with greater cytotoxic effect for ENZ-resistant cell lines, compared with parental ENZ-sensitive cells. We validated the potential hits in vitro and in vivo, and used knockdown and overexpression assays to study the dependencies in ENZ-resistant prostate cancer. RESULTS: ABT199 (BCL-2 inhibitor) and IMD0354 (IKKB inhibitor) were identified as potent and selective inhibitors of cell viability in ENZ-resistant cell lines in vitro and in vivo which were further validated using loss-of-function assays of BCL-2 and IKKB. Notably, we observed that overexpression of BCL-2 and IKKB in ENZ-sensitive cell lines was sufficient for the emergence of ENZ resistance. In addition, we confirmed that BCL-2 or IKKB inhibitors suppressed the development of ENZ resistance in xenografts. However, validation of both BCL-2 and IKKB in matched castration-sensitive/resistant clinical samples showed that, concurrent with the development of ENZ/abiraterone resistance in patients, only the protein levels of IKKB were increased. CONCLUSIONS: Our findings identify BCL-2 and IKKB dependencies in clinically relevant ENZ-resistant prostate cancer cells in vitro and in vivo, but indicate that IKKB upregulation appears to have greater relevance to the progression of human castrate-resistant prostate cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Quinase I-kappa B/metabolismo , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/terapia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Masculino , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Próstata/patologia , Próstata/cirurgia , Prostatectomia , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/cirurgia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Metab ; 3(5): 665-681, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34031589

RESUMO

Cancer metabolism adapts the metabolic network of its tissue of origin. However, breast cancer is not a disease of a single origin. Multiple epithelial populations serve as the culprit cell of origin for specific breast cancer subtypes, yet our knowledge of the metabolic network of normal mammary epithelial cells is limited. Using a multi-omic approach, here we identify the diverse metabolic programmes operating in normal mammary populations. The proteomes of basal, luminal progenitor and mature luminal cell populations revealed enrichment of glycolysis in basal cells and of oxidative phosphorylation in luminal progenitors. Single-cell transcriptomes corroborated lineage-specific metabolic identities and additional intra-lineage heterogeneity. Mitochondrial form and function differed across lineages, with clonogenicity correlating with mitochondrial activity. Targeting oxidative phosphorylation and glycolysis with inhibitors exposed lineage-rooted metabolic vulnerabilities of mammary progenitors. Bioinformatics indicated breast cancer subtypes retain metabolic features of their putative cell of origin. Thus, lineage-rooted metabolic identities of normal mammary cells may underlie breast cancer metabolic heterogeneity and targeting these vulnerabilities could advance breast cancer therapy.


Assuntos
Linhagem da Célula , Metabolismo Energético , Células Epiteliais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Animais , Biomarcadores , Biologia Computacional/métodos , Feminino , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/citologia , Redes e Vias Metabólicas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteoma , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA