Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 17(9)2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27589724

RESUMO

The introduction of multigene constructs into single cells is important for improving the performance of domestic animals, as well as understanding basic biological processes. In particular, multigene constructs allow the engineering and integration of multiple genes related to xenotransplantation into the porcine genome. The piggyBac (PB) transposon system allows multiple genes to be stably integrated into target genomes through a single transfection event. However, to our knowledge, no attempt to introduce multiple genes into a porcine genome has been made using this system. In this study, we simultaneously introduced seven transposons into a single porcine embryonic fibroblast (PEF). PEFs were transfected with seven transposons containing genes for five drug resistance proteins and two (red and green) fluorescent proteins, together with a PB transposase expression vector, pTrans (experimental group). The above seven transposons (without pTrans) were transfected concomitantly (control group). Selection of these transfected cells in the presence of multiple selection drugs resulted in the survival of several clones derived from the experimental group, but not from the control. PCR analysis demonstrated that approximately 90% (12/13 tested) of the surviving clones possessed all of the introduced transposons. Splinkerette PCR demonstrated that the transposons were inserted through the TTAA target sites of PB. Somatic cell nuclear transfer (SCNT) using a PEF clone with multigene constructs demonstrated successful production of cloned blastocysts expressing both red and green fluorescence. These results indicate the feasibility of this PB-mediated method for simultaneous transfer of multigene constructs into the porcine cell genome, which is useful for production of cloned transgenic pigs expressing multiple transgenes.


Assuntos
Elementos de DNA Transponíveis/genética , Técnicas de Transferência de Genes , Técnicas de Transferência Nuclear , Porco Miniatura/genética , Transgenes , Animais , Blastocisto/metabolismo , Resistência a Medicamentos/genética , Feminino , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Gravidez , Suínos
2.
Int J Mol Sci ; 16(8): 17838-56, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26247938

RESUMO

Some reports demonstrated successful genome editing in pigs by one-step zygote microinjection of mRNA of CRISPR/Cas9-related components. Given the relatively long gestation periods and the high cost of housing, the establishment of a single blastocyst-based assay for rapid optimization of the above system is required. As a proof-of-concept, we attempted to disrupt a gene (GGTA1) encoding the α-1,3-galactosyltransferase that synthesizes the α-Gal epitope using parthenogenetically activated porcine oocytes. The lack of α-Gal epitope expression can be monitored by staining with fluorescently labeled isolectin BS-I-B4 (IB4), which binds specifically to the α-Gal epitope. When oocytes were injected with guide RNA specific to GGTA1 together with enhanced green fluorescent protein (EGFP) and human Cas9 mRNAs, 65% (24/37) of the developing blastocysts exhibited green fluorescence, although almost all (96%, 23/24) showed a mosaic fluorescent pattern. Staining with IB4 revealed that the green fluorescent area often had a reduced binding activity to IB4. Of the 16 samples tested, six (five fluorescent and one non-fluorescent blastocysts) had indel mutations, suggesting a correlation between EGFP expression and mutation induction. Furthermore, it is suggested that zygote microinjection of mRNAs might lead to the production of piglets with cells harboring various mutation types.


Assuntos
Galactosiltransferases/genética , Inativação Gênica , Mutação INDEL , Mosaicismo , Oócitos/metabolismo , RNA Mensageiro/genética , Animais , Sistemas CRISPR-Cas , Citoplasma/metabolismo , Feminino , Técnicas de Inativação de Genes/métodos , Humanos , Taxa de Mutação , Partenogênese , Suínos
3.
Theriogenology ; 108: 29-38, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29195121

RESUMO

Recently, successful one-step genome editing by microinjection of CRISPR/Cas9-related mRNA components into the porcine zygote has been described. Given the relatively long gestational period and the high cost of housing swine, the establishment of an effective microinjection-based porcine genome editing method is urgently required. Previously, we have attempted to disrupt a gene encoding α-1,3-galactosyltransferase (GGTA1), which synthesizes the α-Gal epitope, by microinjecting CRISPR/Cas9-related nucleic acids and enhanced green fluorescent protein (EGFP) mRNA into porcine oocytes immediately after electrical activation. We found that genome editing was indeed induced, although the resulting blastocysts were mosaic and the frequency of modified cells appeared to be low (50%). To improve genome editing efficiency in porcine oocytes, cytoplasmic injection was performed 6 h after electrical activation, a stage wherein the pronucleus is formed. The developing blastocysts exhibited higher levels of EGFP. Furthermore, the T7 endonuclease 1 assay and subsequent sequencing demonstrated that these embryos exhibited increased genome editing efficiencies (69%), although a high degree of mosaicism for the induced mutation was still observed. Single blastocyst-based cytochemical staining with fluorescently labeled isolectin BS-I-B4 also confirmed this mosaicism. Thus, the development of a technique that avoids or reduces such mosaicism would be a key factor for efficient knock out piglet production via microinjection.


Assuntos
Edição de Genes , Microinjeções/veterinária , RNA Mensageiro/genética , Suínos/genética , Animais , Sistemas CRISPR-Cas , Deleção de Genes , Oócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA