Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 19(41): 7912-7922, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37706333

RESUMO

Drawing inspiration from natural systems, such as the highly segmented structures found in silk fibroin, is an important strategy when designing strong, yet dynamic biomaterials. Polymer-peptide hybrids aim to incorporate the benefits of hierarchical polypeptide structures into synthetic platforms that are promising materials for hydrogel systems due to aspects such as their biocompatibility and structural tunability. In this work, we demonstrated the utility of poly(ethylene glycol) (PEG) peptide-polyurea hybrids as self-assembled hydrogels. Specifically, poly(ε-carbobenzyloxy-L-lysine)-b-PEG-b-poly(ε-carbobenzyloxy-L-lysine) and poly(ß-benzyl-L-aspartate)-b-PEG-b-poly(ß-benzyl-L-aspartate) triblock copolymers were used as the soft segments in linear peptide-polyurea (PPU) hybrids. We systematically examined the effect of peptide secondary structure and peptide segment length on hydrogelation, microstructure, and rheological properties of our PPU hydrogels. Polymers containing α-helical secondary structures resulted in rapid gelation upon the addition of water, as driven by hierarchical assembly of the peptide segments. Peptide segment length dictated gel strength and resistance to deformation via complex relationships. Simulated injection experiments demonstrated that PPU hydrogels recover their original gel network within 10 s of cessation of high shear. Finally, we showed that PPU hydrogels remain solid-like within the range of 10 to 80 °C; however, a unique softening transition occurs at temperatures corresponding to slight melting of secondary structures. Overall, this bioinspired PPU hybrid platform provides opportunities to design synthetic, bioinspired polymers for hydrogels with tunable microstructure and mechanics for a wide range of thermal and injection-based applications.


Assuntos
Hidrogéis , Lisina , Hidrogéis/química , Ácido Aspártico , Polímeros/química , Polietilenoglicóis/química , Peptídeos/química
2.
Proc Natl Acad Sci U S A ; 114(19): 4875-4880, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439017

RESUMO

Controlling the molecular structure of amorphous cross-linked polymeric materials is a longstanding challenge. Herein, we disclose a general strategy for precise tuning of loop defects in covalent polymer gel networks. This "loop control" is achieved through a simple semibatch monomer addition protocol that can be applied to a broad range of network-forming reactions. By controlling loop defects, we demonstrate that with the same set of material precursors it is possible to tune and in several cases substantially improve network connectivity and mechanical properties (e.g., ∼600% increase in shear storage modulus). We believe that the concept of loop control via continuous reagent addition could find broad application in the synthesis of academically and industrially important cross-linked polymeric materials, such as resins and gels.

3.
Acc Chem Res ; 55(18): 2543-2544, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36124530

Assuntos
Polímeros
4.
Biomacromolecules ; 19(8): 3445-3455, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30001123

RESUMO

Peptide-polymer hybrids combine the hierarchy of biological species with synthetic concepts to achieve control over molecular design and material properties. By further incorporating covalent cross-links, the enhancement of molecular complexity is achieved, allowing for both a physical and covalent network. In this work, the structure and function of poly(ethylene glycol) (PEG)-network hybrids are tuned by varying peptide block length and overall peptide content. Here the impact of poly(ε-carbobenzyloxy-l-lysine) (PZLY) units on block interactions and mechanics is explored by probing secondary structure, PEG crystallinity, and hierarchical organization. The incorporation of PZLY reveals a mixture of α-helices and ß-sheets at smaller repeat lengths ( n = 5) and selective α-helix formation at a higher peptide molecular weight ( n = 20). Secondary structure variations tailored the solid-state film hierarchy, whereby nanoscale fibers and microscale spherulites varied in size depending on the amount of α-helices and ß-sheets. This long-range ordering influenced mechanical properties, resulting in a decrease in elongation-at-break (from 400 to 20%) with increasing spherulite diameter. Furthermore, the reduction in soft segment crystallinity with the addition of PZLY resulted in a decrease in moduli. It was determined that, by controlling PZLY content, a balance of physical associations and self-assembly is obtained, leading to tunable PEG crystallinity, spherulite formation, and mechanics.


Assuntos
Polilisina/análogos & derivados , Polímeros/química , Cristalização , Fenômenos Mecânicos , Polietilenoglicóis/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
5.
Bioconjug Chem ; 28(5): 1325-1339, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28471638

RESUMO

The repair and regeneration of the body's tissue using polymeric materials remains a main focus of biomaterials research. While hydrogels and elastomers have shown biocompatibility and high extensibility, they lack the required toughness to host proliferating cells. As the need for robust polymeric scaffolds grows, new technologies must emerge to meet the stringent physical and biological needs of proliferating cells. To this end, the utilization of self-assembling motifs allows for the construction of versatile networks in which cells can grow. In this review, we discuss emerging techniques that harness the assembling capabilities of synthetic supramolecular and natural peptide motifs to construct mechanically robust elastomers and hydrogel scaffolds. In particular, we focus on how the design and structure impact their mechanical properties and interaction with the cellular environment.


Assuntos
Hidrogéis/química , Fragmentos de Peptídeos/química , Polímeros/química , Engenharia Tecidual , Alicerces Teciduais , Animais , Humanos
6.
Biomacromolecules ; 17(12): 3931-3939, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27936724

RESUMO

Nature has achieved controlled and tunable mechanics via hierarchical organization driven by physical and covalent interactions. Polymer-peptide hybrids have been designed to mimic natural materials utilizing these architectural strategies, obtaining diverse mechanical properties, stimuli responsiveness, and bioactivity. Here, utilizing a molecular design pathway, peptide-polyurea hybrid networks were synthesized to investigate the role of architecture and structural interplay on peptide hydrogen bonding, assembly, and mechanics. Networks formed from poly(ß-benzyl-l-aspartate)-poly(dimethylsiloxane) copolymers covalently cross-linked with a triisocyanate yielded polyurea films with a globular-like morphology and parallel ß-sheet secondary structures. The geometrical constraints imposed by the network led to an increase in peptide loading and ∼7x increase in Young's modulus while maintaining extensibility (∼160%). Thus, the interplay of physical and chemical bonds allowed for the modulation of resulting mechanical properties. This investigation provides a framework for the utilization of structural interplay and mechanical tuning in polymer-peptide hybrids, which offers a pathway for the design of future hybrid biomaterial systems.


Assuntos
Materiais Biocompatíveis/química , Fragmentos de Peptídeos/química , Polímeros/química , Módulo de Elasticidade , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Estrutura Secundária de Proteína
7.
Soft Matter ; 13(1): 283-291, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27411849

RESUMO

This investigation highlights the potential for electrospun nanofiber mats and self-assembled nanofiber networks to be interfaced synergistically to induce hygromorphic behaviour. Control poly(vinyl alcohol) (PVA) electrospun active layers and 1,3:2,4-di-p-methylbenyliedene sorbitol (MDBS) self-assembled passive layers encapsulated in an ethylene oxide-epichlorohydrin (EO-EPI) copolymer matrix were fabricated to examine the influence of composition on the properties guiding hygromorphism, such as water transport, layer thickness, and layer modulus. Experimentally determined material constants were utilized in conjunction with mathematical modeling to determine ideal layer properties. It was revealed that the active layer with the highest PVA content exhibited the fastest water transport, and the passive layer with the highest MDBS content displayed the slowest water transport. However, the hygromorphic bilayer fabricated utilizing the lowest PVA content and the highest MDBS fraction was predicted to induce the highest change in curvature due to the lower modulus and thickness of the PVA nanofiber active layer. Decreasing the MDBS content reduced the passive layer modulus while increasing water transport, which theoretically reduced the overall bilayer curvature. The hygromorphic bilayer composites fabricated using these ideal control layers exhibited folding bias and response variations dependent upon active layer composition and imposed folding directions. By utilizing the favorable force balances between the active layer with the lower PVA content and the passive layer with the highest MDBS amount in conjunction with folding bias in a non-preferential direction, it was possible to achieve hygromorphic unfolding and refolding with hydration. Through modelling and individual layer examination, a unique platform built on two independent fiber networks has been designed to achieve biomimetic hygromorphism in synthetic bilayer composites.

8.
Mater Adv ; 5(9): 3950-3964, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38721262

RESUMO

The functionality inherent in lignin-derivable bisguaiacols/bissyringols can improve the processability and performance of the resulting polymers. Herein, non-isocyanate polyurethanes (NIPUs) were synthesized from bisguaiacols/bissyringols with varying degrees of methoxy substitution and differing bridging groups. Notably, the presence of increasing numbers of methoxy groups (0, 2, and 4) in bisphenol F (BPF)-, bisguaiacol F (BGF)-, and bissyringol F (BSF)-NIPUs led to higher percentages of hydrogen-bonded -OH/-NH groups (i.e., ∼65%, ∼85%, ∼95%, respectively). Increased hydrogen bonding between chains improved the elongation-at-break (εbreak) and toughness of lignin-derivable NIPUs over their petroleum counterparts without a reduction in Young's moduli and tensile strengths. For example, BSF-NIPU exhibited the highest εbreak ∼210% and toughness ∼62 MJ m-3, followed by BGF-NIPU (εbreak ∼185% and toughness ∼58 MJ m-3), and then BPF-NIPU (εbreak ∼140% and toughness ∼42 MJ m-3). Similar trends were found in the dimethyl-substituted analogues, particularly for the bisphenol A-NIPU and bisguaiacol A-NIPU. Importantly, the melt rheology of the lignin-derivable NIPUs was comparable to that of the petroleum-derived analogues, with a slightly lower viscosity (i.e., improved melt flow) for the bio-derivable NIPUs. These findings suggested that the added functionalities (methoxy groups) derived from lignin precursors improved thermomechanical stability while also offering increased processability. Altogether, the structure-property-processing relationships described in this work can help facilitate the development of sustainable, performance-advantaged polymers.

9.
RSC Sustain ; 2(10): 2844-2850, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39310879

RESUMO

The functionality inherent in lignin-derivable aromatics (e.g., polar methoxy groups) can provide a potential opportunity to improve the hydrophilicity of polysulfones (PSfs) without the need for the additional processing steps and harsh reagents/conditions that are typically used in conventional PSf modifications. As determined herein, lignin-derivable PSfs without any post-polymerization modification exhibited higher hydrophilicity than comparable petroleum-based PSfs (commercial/laboratory-synthesized) and also demonstrated similar hydrophilicity to functionalized BPA-PSfs reported in the literature. Importantly, the lignin-derivable PSfs displayed improved thermal properties relative to functionalized BPA-PSfs in the literature, and the thermal properties of these bio-derivable PSfs were close to those of common non-functionalized PSfs. In particular, the glass transition temperature (T g) and degradation temperature of 5% weight loss (T d5%) of lignin-derivable PSfs (T g ∼165-170 °C, T d5% ∼400-425 °C) were significantly higher than those of typical functionalized BPA-PSfs in the literature (T g ∼110-160 °C, T d5% ∼240-260 °C) and close to those of unmodified, commercial/laboratory-synthesized BPA-/bisphenol F-PSfs (T g ∼180-185 °C, T d5% ∼420-510 °C).

10.
Food Chem Toxicol ; 190: 114787, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838754

RESUMO

Lignin-derivable bisguaiacols/bissyringols are viable alternatives to commercial bisphenols; however, many bisguaiacols/bissyringols (e.g., bisguaiacol F [BGF]) have unsubstituted bridging carbons between the aromatic rings, making them more structurally similar to bisphenol F (BPF) than bisphenol A (BPA) - both of which are suspected endocrine disruptors. Herein, we investigated the estrogenic activity (EA) and developmental toxicity of dimethyl-substituted bridging carbon-based lignin-derivable bisphenols (bisguaiacol A [BGA] and bissyringol A [BSA]). Notably, BSA showed undetectable EA at seven test concentrations (from 10-12 M to 10-6 M) in the MCF-7 cell proliferation assay, whereas BPA had detectable EA at five concentrations (from 10-10 M to 10-6 M). In silico results indicated that BSA had the lowest binding affinity with estrogen receptors. Moreover, in vivo chicken embryonic assay results revealed that lignin-derivable monomers had minimal developmental toxicity vs. BPA at environmentally relevant test concentrations (8.7-116 µg/kg). Additionally, all lignin-derivable compounds showed significantly lower expression fold changes (from ∼1.81 to ∼4.41) in chicken fetal liver tests for an estrogen-response gene (apolipoprotein II) in comparison to BPA (fold change of ∼11.51), which was indicative of significantly reduced estrogenic response. Altogether, the methoxy substituents on lignin-derivable bisphenols appeared to be a positive factor in reducing the EA of BPA alternatives.


Assuntos
Compostos Benzidrílicos , Estrogênios , Lignina , Fenóis , Animais , Fenóis/toxicidade , Fenóis/química , Humanos , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Lignina/química , Embrião de Galinha , Estrogênios/toxicidade , Estrogênios/química , Células MCF-7 , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química , Proliferação de Células/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/efeitos dos fármacos , Galinhas
11.
ChemSusChem ; 17(18): e202400238, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38609332

RESUMO

The hydrogenolysis of polymers is emerging as a promising approach to deconstruct plastic waste into valuable chemicals. Yet, the complexity of plastic waste, including multilayer packaging, is a significant barrier to handling realistic waste streams. Herein, we reveal fundamental insights into a new chemical route for transforming a previously unaddressed fraction of plastic waste - poly(ethylene-co-vinyl alcohol) (EVOH) and related polymer blends - into alkane products. We report that Ru/ZrO2 is active for the concurrent hydrogenolysis, hydrogenation, and hydrodeoxygenation of EVOH and its thermal degradation products into alkanes (C1-C35) and water. Detailed reaction data, product analysis, and catalyst characterization reveal that the in-situ thermal degradation of EVOH forms aromatic intermediates that are detrimental to catalytic activity. Increased hydrogen pressure promotes hydrogenation of these aromatics, preventing catalyst deactivation and improving alkane product yields. Calculated apparent rates of C-C scission reveal that the hydrogenolysis of EVOH is slower than low-density polyethylene. We apply these findings to achieve hydrogenolysis of EVOH/polyethylene blends and elucidate the sensitivity of hydrogenolysis catalysts to such blends. Overall, we demonstrate progress towards efficient catalytic processes for the hydroconversion of waste multilayer film plastic packaging into valuable products.

12.
ACS Cent Sci ; 10(9): 1755-1764, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39345819

RESUMO

Catalytic deconstruction has emerged as a promising solution to valorize polyethylene (PE) waste into valuable products, such as oils, fuels, surfactants, and lubricants. Unfortunately, commercialization has been hampered by inadequate optimization of PE deconstruction due to an inability to either truly characterize the polymer transformations or adjust catalytic conditions to match the ever-evolving product distribution and associated property changes. To address these challenges, a detailed analysis of molar mass distributions and thermal characterization was developed herein and applied to low-density polyethylene (LDPE) deconstruction to enable more thorough identification of polymer chain characteristics within the solids (e.g., changes in molar mass or branching structure). For example, LDPE hydrocracking exhibited comparable rates of polymer chain isomerization and C-C bond scission, and the solids generated possessed a broadened molar mass distribution with a disappearance of a significant fraction of highly linear segments, indicating polymer-structure-dependent interactions with the catalyst. Solids analysis from pyrolysis yielded starkly different results, as the resulting solids were devoid of unreacted polymer chains and had a narrowed molar mass distribution even at short times (e.g., 0.2 h). By tracking the polymeric deconstruction behavior as a function of reaction type, time, and catalyst design, we mapped critical pathways toward PE valorization.

13.
JACS Au ; 4(4): 1471-1479, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665666

RESUMO

We report a depolymerization strategy to nearly quantitatively regenerate isocyanates from thermoplastic and thermoset polyurethanes (PUs) and then resynthesize PUs using the recovered isocyanates. To date, chemical/advanced recycling of PUs has focused primarily on the recovery of polyols and diamines under comparatively harsh conditions (e.g., high pressure and temperature), and the recovery of isocyanates has been difficult. Our approach leverages an organoboron Lewis acid to depolymerize PUs directly to isocyanates under mild conditions (e.g., ∼80 °C in toluene) without the need for phosgene or other harsh reagents, and we show that both laboratory-synthesized and commercially sourced PUs can be depolymerized. Furthermore, we demonstrate the utility of the recovered isocyanate in the production of second-generation PUs with thermal properties and molecular weights similar to those of the virgin PUs. Overall, this route uniquely provides an opportunity for circularity in PU materials and can add significant value to end-of-life PU products.

14.
J Mater Chem B ; 11(24): 5594-5606, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37255364

RESUMO

Inspired by spider silk's hierarchical diversity, we leveraged peptide motifs with the capability to tune structural arrangement for controlling the mechanical properties of a conventional polymer framework. The addition of nanofiller with hydrogen bonding sites was used as another pathway towards hierarchical tuning via matrix-filler interactions. Specifically, peptide-polyurea hybrids (PPUs) were combined with cellulose nanocrystals (CNCs) to develop mechanically-tunable nanocomposites via tailored matrix-filler interactions (or peptide-cellulose interactions). In this material platform, we explored the effect of these matrix-filler interactions on the secondary structure, hierarchical ordering, and mechanical properties of the peptide hybrid nanocomposites. Interactions between the peptide matrix and CNCs occur in all of the PPU/CNC nanocomposites, preventing α-helical ordering, but promoting inter-molecular hydrogen bonded ß-sheet formation. Depending on peptide and CNC content, the Young's modulus varies from 10 to 150 MPa. Unlike conventional cellulose-reinforced polymer nanocomposites, the mechanical properties of these composite materials are dictated by a balance of CNC reinforcement, peptidic ordering, and microphase-separated morphology. This research highlights that leveraging peptide-cellulose interactions is a strategy to create materials with targeted mechanical properties for a specific application using a limited selection of building blocks.


Assuntos
Celulose , Nanocompostos , Celulose/química , Polímeros/química , Peptídeos , Módulo de Elasticidade , Nanocompostos/química
15.
Chem Sci ; 14(20): 5243-5265, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37234906

RESUMO

The circularity of current and future polymeric materials is a major focus of fundamental and applied research, as undesirable end-of-life outcomes and waste accumulation are global problems that impact our society. The recycling or repurposing of thermoplastics and thermosets is an attractive solution to these issues, yet both options are encumbered by poor property retention upon reuse, along with heterogeneities in common waste streams that limit property optimization. Dynamic covalent chemistry, when applied to polymeric materials, enables the targeted design of reversible bonds that can be tailored to specific reprocessing conditions to help address conventional recycling challenges. In this review, we highlight the key features of several dynamic covalent chemistries that can promote closed-loop recyclability and we discuss recent synthetic progress towards incorporating these chemistries into new polymers and existing commodity plastics. Next, we outline how dynamic covalent bonds and polymer network structure influence thermomechanical properties related to application and recyclability, with a focus on predictive physical models that describe network rearrangement. Finally, we examine the potential economic and environmental impacts of dynamic covalent polymeric materials in closed-loop processing using elements derived from techno-economic analysis and life-cycle assessment, including minimum selling prices and greenhouse gas emissions. Throughout each section, we discuss interdisciplinary obstacles that hinder the widespread adoption of dynamic polymers and present opportunities and new directions toward the realization of circularity in polymeric materials.

16.
Biomacromolecules ; 13(5): 1279-86, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22482877

RESUMO

One of the key design components of nature is the utilization of hierarchical arrangements to fabricate materials with outstanding mechanical properties. Employing the concept of hierarchy, a new class of segmented polyurethane/ureas (PUUs) was synthesized containing either a peptidic, triblock soft segment, or an amorphous, nonpeptidic homoblock block soft segment with either an amorphous or a crystalline hard segment to investigate the effects of bioinspired, multiple levels of organization on thermal and mechanical properties. The peptidic soft segment was composed of poly(benzyl-l-glutamate)-block-poly(dimethylsiloxane)-block-poly(benzyl-l-glutamate) (PBLG-b-PDMS-b-PBLG), restricted to the ß-sheet conformation by limiting the peptide segment length to <10 residues, whereas the amorphous soft segment was poly(dimethylsiloxane) (PDMS). The hard segment consisted of either 1,6-hexamethylene diisocyanate (crystalline) or isophorone diisocyanate (amorphous) and chain extended with 1,4-butanediol. Thermal and morphological characterization indicated microphase separation in these hierarchically assembled PUUs; furthermore, inclusion of the peptidic segment significantly increased the average long spacing between domains, whereas the peptide domain retained its ß-sheet conformation regardless of the hard segment chemistry. Mechanical analysis revealed an enhanced dynamic modulus for the peptidic polymers over a broader temperature range as compared with the nonpeptidic PUUs as well as an over three-fold increase in tensile modulus. However, the elongation-at-break was dramatically reduced, which was attributed to a shift from a flexible, continuous domain morphology to a rigid, continuous matrix in which the peptide, in conjunction with the hard segment, acts as a stiff reinforcing element.


Assuntos
Peptídeos/química , Poliuretanos/síntese química , Ureia/síntese química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Poliuretanos/química , Temperatura , Ureia/análogos & derivados , Ureia/química
17.
JACS Au ; 2(1): 3-11, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35098218

RESUMO

The sustainability of current and future plastic materials is a major focus of basic research, industry, government, and society at large. There is a general recognition of the positive impacts of plastics, especially packaging; however, the negative consequences around end-of-life outcomes and overall materials circularity are issues that must be addressed. In this perspective, we highlight some of the challenges associated with the many uses of plastic components and the diversity of materials needed to satisfy consumer demand, with several examples focused on plastics packaging. We also discuss the opportunities provided by conventional and advanced recycling/upgrading routes to petrochemical and bio-based materials and feedstocks, along with overviews of chemistry-related (experimental, computational, data science, and materials traceability) approaches to the valorization of polymers toward a closed-loop environment.

18.
ACS Appl Mater Interfaces ; 14(5): 7270-7282, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35077647

RESUMO

The reinforcement of polymer nanocomposites can be achieved through alignment or percolation of cellulose nanocrystals (CNCs). Here, we compare the efficacy of these reinforcement mechanisms in thermoplastic polyurethane (PU) elastomer nanocomposites containing thermally stable cotton CNCs. CNC alignment was achieved by melt spinning nanocomposite fibers, while a percolating CNC network was generated by solvent casting nanocomposite films with CNC contents up to 20 wt %. While in films both the CNCs and the PU matrix were entirely isotropic at all concentrations as confirmed by wide-angle X-ray scattering and birefringence analysis, the CNCs in the fibers exhibited a preferential orientation, which improved with increasing CNC concentration. Increasing the CNC concentration in the fibers reduces, however, the alignment of the PU chains, resulting in an entirely isotropic PU matrix at high CNC contents. The mechanical properties of films and fibers were evaluated using stress-strain measurements. Nanocomposite fibers with low CNC content exhibited superior stiffness, extensibility, and strength compared to the films, while the films displayed superior mechanical properties at high CNC concentrations. These findings are rationalized using common semiempirical models describing the reinforcing effects of CNC alignment in fibers (Halpin-Tsai) and CNC percolation in films (percolation model). The formation of a percolating CNC network leads to a stronger reinforcement than CNC alignment, as the reinforcing effect of the latter is limited by the comparably low aspect ratio of CNCs extracted from cotton. As a consequence, above the percolation threshold for cotton CNCs, isotropic nanocomposite PU films show a higher stiffness than aligned nanocomposite PU fibers.

19.
Mol Syst Des Eng ; 6(12): 1003-1015, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35096418

RESUMO

Inspired by Nature's tunability driven by the modulation of structural organization, we utilize peptide motifs as an approach to tailor not only hierarchical structure, but also thermo-responsive shape memory properties of conventional polymeric materials. Specifically, poly(ß-benzyl-L-aspartate)-b-poly(dimethylsiloxane)-b-poly(ß-benzyl-L-aspartate) was incorporated as the soft segment in peptide-polyurea hybrids to manipulate hierarchical ordering through peptide secondary structure and a balance of inter- and intra-molecular hydrogen bonding. Employing these bioinspired peptidic polyureas, we investigated the influence of secondary structure on microphase-separated morphology, and shape fixity and recovery via attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), small-angle X-ray scattering (SAXS) and dynamic mechanical analysis (DMA). The ß-sheet motifs promoted phase mixing through extensive inter-molecular hydrogen bonding between the hard block and peptide segments and provided an increased chain elasticity, resulting in decreased shape fixity compared to a non-peptidic control. In contrast, intra-molecular hydrogen bonding driven by the α-helical arrangements yielded a microphase-separated and hierarchically ordered morphology, leading to an increase in the shape fixing ratio. These results indicate that peptide secondary structure provides a convenient handle for tuning shape memory properties by regulating hydrogen bonding with the surrounding polyurea hard segment, wherein extent of hydrogen bonding and phase mixing between the peptidic block and hard segment dictate the resulting shape memory behaviour. Furthermore, the ability to shift secondary structure as a function of temperature was also demonstrated as a pathway to influence shape memory response. This research highlights that peptide secondary conformation influences the hierarchical ordering and modulates the shape memory response of peptide-polymer hybrids. We anticipate that these findings will enable the design of smart bio-inspired materials with responsive and tailored function via a balance of hydrogen bonding character, structural organization, and mechanics.

20.
Science ; 373(6550): 66-69, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210879

RESUMO

Plastics have revolutionized modern life, but have created a global waste crisis driven by our reliance and demand for low-cost, disposable materials. New approaches are vital to address challenges related to plastics waste heterogeneity, along with the property reductions induced by mechanical recycling. Chemical recycling and upcycling of polymers may enable circularity through separation strategies, chemistries that promote closed-loop recycling inherent to macromolecular design, and transformative processes that shift the life-cycle landscape. Polymer upcycling schemes may enable lower-energy pathways and minimal environmental impacts compared with traditional mechanical and chemical recycling. The emergence of industrial adoption of recycling and upcycling approaches is encouraging, solidifying the critical role for these strategies in addressing the fate of plastics and driving advances in next-generation materials design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA