Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 34(2): 833-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37389712

RESUMO

ß-Lactum antibiotics are broad class of antibiotics which kills bacteria by inhibiting the formation of peptidoglycan that constitutes the bacterial cell wall. The resistance that develops in bacteria for antibiotics led the scientific world to think about the future aspects for modifying the way through which antibiotics are acted on the bacteria and become lethal for them. In this consequence, the potential of latest marketed antibiotics e.g. Amoxiciline (I), ceftazidim (II) have been evaluated after being conjugated with quantum dots. The surface of quantum dots has been conjugated with antibiotics by carbodiimide coupling with the help of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as conjugating agent between antibiotic and functionalized quantum dots. The antibacterial properties of QD-conjugated antibiotics have been determined by disc diffusion assay. The potency of QD-conjugated antibiotics has been estimated by determining their MIC50 for the selected strain of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Minimum inhibitory concentration study, minimum bactericidal concentration and growth pattern analysis revealed that QD-antibiotic conjugates showed slightly more prospective than pure native antibiotics against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Antibacterianos/farmacologia , Compostos de Cádmio/farmacologia , Estudos Prospectivos , Telúrio , Bactérias , Escherichia coli , Carbodi-Imidas , Testes de Sensibilidade Microbiana
2.
J Fluoresc ; 31(4): 951-960, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33821436

RESUMO

To utilize the nanomaterials as an effective carrier for the drug delivery applications, it is important to study the interaction between nanomaterials and drug or biomolecules. In this study GSH functionalized Mn2+-doped CdTe/ZnS QDs has been utilized as a model nanomaterial due to its high luminescence property. Folic acid (FA) gradually quenches the FL of GSH functionalized Mn2+ - doped CdTe/ZnS QDs. The Stern-Volmer quenching constant (Ksv), binding constant (Ks) and effective quenching constant (Ka) for the FA-QDs system is calculated to be 1.32 × 105 M-1, 1.92 × 105 and 0.27 × 105 M-1, respectively under optimized condition (Temp. 300 K, pH 8.0, incubation time 40 min.). The effects of temperature, pH, and incubation time on FA-QDs system have also been studied. Statistical analysis of the quenched FL intensity versus FA concentration revealed a linear range from 1 × 10-7 to 5.0 × 10-5 for FA detection. The LOD of the current nano-sensor for FA was calculated to be 0.2 µM. The effect of common interfering metal ions and other relevant biomolecules on the detection of FA (12.0 µM) have also been investigated. L-cysteine and glutathione displayed moderate effect on FA detection. Similarly, the common metal ions (Na+, K+, Ca2+ and Mg2+) produced minute interference while Zn2+ Cu2+ and Fe3+ exert moderate interference. Toxic metal ions (Hg2+ and Pb2+) produced severe interferences in FA detection.Graphical abstract GSH-Mn2+ CdTe/ZnS QDs based Fluorescence Nanosensor for Folic acid.


Assuntos
Sulfetos , Compostos de Zinco , Compostos de Cádmio , Fluorescência , Pontos Quânticos , Telúrio
3.
J Environ Sci (China) ; 92: 18-27, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430121

RESUMO

Arsenic (As)-toxicity is recognized as one of the major environmental problems, affecting productivity of crops worldwide, thereby threatening sustainable agriculture and food security. Progression in nanotechnology and its impacts have brought up concerns about the application of engineered nanoparticles (NPs) in various sectors of the economy, including the field of agronomy. Among various NPs, there has been a rising amount of interest regarding the effects of titanium NPs (TiNPs) on plants growth and development, and their fate of abiotic stress tolerance. Hence, the present study was aimed to assess the ameliorative potentialities of chemically and biologically/green synthesized TiNPs to alleviate As-induced toxic responses in Vigna radiata L. The results revealed that exposure to As hindered the growth indices (radicle length and biomass) and membrane integrity, while were improved with the application of chemical and green synthesized TiNPs. In addition, treatment of As provoked the accretion of reactive oxygen species (superoxide and hydrogen peroxide) and malondialdehyde (a lipid peroxidized product), but were diminished by the supplementation of chemical and green manufactured TiNPs. The experimental data also signified that exogenous application of chemical and green synthesized TiNPs conferred tolerance to As-induced oxidative injuries via perking-up the expressions of antioxidant genes and enzyme systems viz; superoxide dismutase and catalase. Therefore, the present study inferred that chemically and green synthesized TiNPs, particularly green manufactured, effectively mitigated the adverse impacts of As by augmenting antioxidant machinery, thereby proving its potentiality in the alleviation of As-toxicity, at least in Vignaradiata L.


Assuntos
Arsênio , Nanopartículas , Vigna , Antioxidantes , Catalase , Estresse Oxidativo , Espécies Reativas de Oxigênio , Superóxido Dismutase , Titânio
4.
J Fluoresc ; 27(3): 781-789, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28032282

RESUMO

Arsenic (As3+) is a hazardous and ubiquitous element; hence the quantitative detection of arsenic in various kinds of environmental sample is an important issue. Herein, we reported L-cysteine capped CdTe Quantum dot based optical sensor for the fluorometric detection of arsenic (III) in real water sample. The method is based on the fluorescence quenching of QDs with the addition of arsenic solution that caused the reduction in fluorescence intensity due to strong interaction between As3+ and L-cysteine to form As(Cys)3. The calibration curve was linear over 2.0 nM-0.5 µM arsenic with limit of detection (LOD) of 2.0 nM, correlation coefficient (r2) of 0.9698, and relative standard deviation (RSD %) of 5.2%. The Stern-Volmer constant for the quenching of CdTe QDs with As3+ at optimized condition was evaluated to be 1.17 × 108 L mol-1 s-1. The feasibility of the sensor has been analyzed by checking the inference of common metal ions available in the water such as K+, Na+, Mg2+, Ca2+, Ba2+, Cu2+, Ni2+, Zn2+, Al3+, Co2+, Cr2+, Fe3+ and its higher oxidation state As5+. Graphical Abstract Schematic representation of As3+ detection by L-Cysteine capped CdTe QDs.


Assuntos
Arsênio/análise , Técnicas Biossensoriais/métodos , Compostos de Cádmio/química , Fluorescência , Corantes Fluorescentes/química , Luminescência , Pontos Quânticos/química , Telúrio/química , Espectrometria de Fluorescência/métodos , Água/análise
5.
J Fluoresc ; 26(3): 855-65, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26825079

RESUMO

Protein Quantum dots interaction is crucial to investigate for better understanding of the biological interactions of QDs. Here in, the model protein Bovine serum albumin (BSA) was used to evaluate the process of protein QDs interaction and adsorption on QDs surface. The modified Stern-Volmer quenching constant (Ka), number of binding sites (n) at different temperatures (298 308 and 318 K ± 1) and corresponding thermodynamic parameters (ΔG < 0, ΔH < 0, and ΔS > 0) were calculated. The quenching constant (Ks) and number of binding sites (n) is found to be inversely proportional to temperature. It signified that static quenching mechanism is dominant over dynamic quenching. The standard free energy change (ΔG < 0) implies that the binding process is spontaneous, while the enthalpy change (ΔH < 0) suggest that the binding of QDs to BSA is an enthalpy-driven process. The standard entropy change (ΔS > 0) suggest that hydrophobic force played a pivotal role in the interaction process. The adsorption process were assessed and evaluated by pseudofirst-order, pseudosecond-order kinetic model, and intraparticle diffusion model.


Assuntos
Pontos Quânticos/química , Soroalbumina Bovina/química , Adsorção , Animais , Sítios de Ligação , Bovinos , Cinética , Espectrometria de Fluorescência , Termodinâmica
6.
Discov Nano ; 19(1): 37, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421453

RESUMO

Early diagnosis of cancer demands sensitive and accurate detection of cancer biomarkers in blood. Carbon dots (CDs) bio-functionalization with antibodies, peptides or aptamers have played significant role in cancer diagnosis and targeted cancer therapy. Herein, a biosensor for detection of cancer biomarker carcinoembryonic antigen (CEA) in blood serum has been designed using CDs bio-functionalized with HRP-conjugated CEA antibody (CUCDs@CEAAb2) as detection probe. CDs were synthesized by upscaling of cow urine, a nitrogen rich biomass waste, by hydrothermal method. Detection probe based on CDs resulted in 3.5 times higher sensitivity as compared to conventional electrochemical sandwich immunoassay. To further improve the sensor performance, hyper-branched polyethylenimine grafted poly amino aniline (PEI-g-PAANI) was used as the sensing interface, which enabled immobilization of higher amount of capture antibody. Detection of CEA in human blood serum coupled with wide linear range (0.5-50 ng/ml), good specificity, stability, reproducibility and low detection limit (10 pg/ml) signified the excellence of CUCDs based CEA immunosensor. CUCDs exhibited excitation wavelength dependent fluorescence property and showed strong blue emission under UV irradiation. MTT assay indicated that the material is not toxic towards human dental pulp stem cells (hDPSCs) and MG63 osteosarcoma cells (cell viability > 90%). The present study demonstrates a methodology for valorization of animal waste to a cost-effective carbon based functional nanomaterial for clinical detection of cancer biomarkers.

7.
J Mater Chem B ; 12(3): 742-751, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165823

RESUMO

Bimodal detection facilitates the accurate and reliable detection of cancer biomarkers, which can assist in the early diagnosis of cancer. Herein, S-doped carbon dots (OCDs) with a size of 3 nm and blue emission were synthesized by the hydrothermal treatment of onion extract. The S-doped carbon dots were bioconjugated with an antibody (OCDs@PSAAbHRP) to design a nanoprobe for the detection of prostate specific antigen (PSA), an important serum based prostate cancer biomarker. The detection probe enabled the biomodal assay of PSA via fluorescence immunoassay (FIA) and electrochemical immunoassay (ECIA). In both assays, polyethylenimine stabilized polyaniline nanoparticles (PNPs) were used as the immobilization matrix, which played a major role in widening the linear range of biosensors (0.1 to 100 ng ml-1 for ECIA and 5 to 120 ng ml-1 for FIA). Paper-based and smartphone-integrated fluorescence immuno-array developed using the OCDs@PSAAbHRP detection probe provided cost-effective and rapid detection, while the electrochemical immunoassay provided a high sensitivity (7.8 µA ng-1 ml-1 cm-2) and low detection limit (38 pg ml-1) for PSA detection. The role of OCDs in enhancing the sensor performance was deciphered by carrying out detailed electrochemical studies with HRP enzyme-loaded OCDs. The biosensor was used to detect PSA in human blood serum samples and the results were consistent with conventional techniques. Owing to its analytical properties coupled with simplicity, cost-effectiveness, and portability, the bimodal sensor system has potential for application in clinical analysis.


Assuntos
Nanopartículas Metálicas , Neoplasias da Próstata , Masculino , Humanos , Biomarcadores Tumorais , Antígeno Prostático Específico/análise , Carbono , Próstata/química , Nanopartículas Metálicas/química , Neoplasias da Próstata/diagnóstico , Imunoensaio/métodos
8.
ACS Omega ; 8(34): 31410-31418, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663469

RESUMO

A facile one-step carbonization approach is reported herein for the sustainable hydrothermal synthesis of fluorescent blue nitrogen-doped carbon quantum dots (NCQDs) using banana petioles obtained as biomass waste. These NCQDs were used to design a "turn-off" fluorescent probe, which exhibited excellent sensing capability toward the selective detection of micronutrient, Fe3+ ion, with a limit of detection (LOD) of 0.21 nM. The turn-off process involves the formation of a nonradiative charge transfer complex via a photoinduced electron transfer process. The sensor showed a linear range from 5 to 200 nM and was used for the estimation of Fe3+ ions in real plant samples. Further, a paper-based assay was developed for the quantitative estimation of Fe3+ with LOD values of 0.47 nM for solution-based assay and 0.94 nM for paper-based assay using a smartphone-based readout for potential on-field applications in precision agriculture. Bioimaging studies on banana leaf cells using NCQDs revealed the selective staining of stomata openings on leaf lamella. Therefore, this work provides a way for the valorization of biomass waste into functional nanomaterials without using any extra chemicals.

9.
RSC Adv ; 10(41): 24190-24202, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516221

RESUMO

An enzyme immobilized glutathione (GSH)-capped CdTe quantum dot (QD)-based fluorescence assay has been developed for monitoring organophosphate pesticides. In principle, GSH-capped CdTe QDs exhibit higher sensitivity towards H2O2 produced from the active enzymatic reaction of acetylcholinesterase (AChE) and choline oxidase (CHOx), which results in the fluorescence (FL) "turn-off" of the GSH-capped CdTe QDs. A "turn-on" FL of the CdTe QDs at 520 nm was recovered in the presence of organophosphate (OP). The FL changes of the GSH-capped CdTe QD/AChE/CHOx biosensor reasonably correspond to the amount of OP pesticides. The detection limit of the CdTe/AChE/CHOx biosensor towards paraoxon, dichlorvos, malathion and triazophos was 1.62 × 10-15 M, 75.3 × 10-15 M, 0.23 × 10-9 M and 10.6 × 10-12 M, respectively. The GSH-capped CdTe QDs/AChE/CHOx biosensor was applied as a FL nanoprobe for assaying the enzymatic activity of AChE. The inhibited AChE was reactivated up to 94% using pyridine oximate (2-PyOx-), and functionalized pyridinium oximates (4-C12PyOx- and 4-C18PyOx-) of varying chain lengths. It was found that the reactivation potency of the tested oximes varied with the chain length of the oximes. This biosensing system offers the promising benefit for the determination of the OP pesticides in food, water and environmental samples.

10.
Plant Physiol Biochem ; 156: 78-86, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32919212

RESUMO

The scientific and technological applications of one of the nanomaterials viz.; carbon dot (C-dots), having extraordinary properties, is becoming an emerging and ongoing research area in recent times. In the present study, we have evaluated the effectiveness of C-dots in reducing arsenic (As) toxicity by analyzing physiological, biochemical and molecular parameters in Cicer arietinum L. The results revealed that As decreased the germination rate, growth, biomass, and membrane stability of the cell to a significant extent. Further, As was taken up by the growing seeds which eventually caused cell death. Levels of reactive oxygen species (ROS), stress markers (malondialdehyde), activities of defensive enzymes (glutathione-S-transferase and pyrroline-5-carboxylate synthetase) and non-enzymatic antioxidant contents (proline and glutathione) were increased under As stress. Moreover, As treatment resulted in the up-regulation of expressions of NADPH oxidase and defense-related genes in Cicer arietinum L. However, application of C-dots along with As improved the germination and growth of Cicer arietinum L. Exogenous application of C-dots, enhanced the expressions of defense-related genes and, contents of proline and glutathione, thereby causing considerable reductions in ROS, and malondialdehyde levels. Overall, this study suggests the possible involvement of C-dots in lowering the toxic effects of As on biomass by reducing As uptake and, inducing the activities/gene expressions and contents of enzymatic and non-enzymatic antioxidants.


Assuntos
Arsênio/metabolismo , Carbono/química , Cicer/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Arsênio/toxicidade , Cicer/genética , Regulação da Expressão Gênica de Plantas , Nanoestruturas/química
11.
RSC Adv ; 9(72): 42085-42095, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-35542852

RESUMO

A large number of cardiovascular diseases have recently become of serious concern throughout the world. Herein, we developed a colorimetric probe based on functionalized silver nanoparticles (AgNPs) for the efficient sensing of cholesterol, an important cardiovascular risk marker. A simple sodium borohydride reduction method was employed to synthesize the AgNPs. The cholesterol oxidase (ChOx)-immobilized AgNPs interact with free cholesterol to produce H2O2 in proportion to the concentration of cholesterol, resulting in decreased AgNP absorbance (turn-off) at 400 nm due to electron transfer between the AgNPs and H2O2. The response of the sensor can also be observed visually. The absorption intensity of the AgNPs is recovered (turn-on) upon the addition of sodium dodecyl sulfate due to the inhibition of ChOx. This on-off mechanism was effectively applied to detect cholesterol within the concentration range 10-250 nM with a low detection limit of approximately 0.014 nM. Moreover, the selectivity of the sensor toward cholesterol was analyzed in the presence of a range of interfering organic substances such as glucose, urea, and sucrose. Finally, the potential of the proposed sensor was evaluated using real samples.

12.
J Hazard Mater ; 353: 44-52, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29631046

RESUMO

Application of engineered nanomaterials has increased these days due to their beneficial impacts on several sectors of the economy, including agriculture. Silver nanoparticles (AgNP) are commonly used to improve rate of seed germination, and growth and development of plants. The present study was aimed to monitor the role of engineered AgNP (non-dialysed) in the amelioration of fluoride (F)-induced oxidative injuries in Cajanus cajan L. Experimental results revealed that F-exposure inhibited growth and membrane stability index, while were enhanced with the augmentation of AgNP. The results also demonstrated that F treatment enhanced the accumulations of reactive oxygen species, malondialdehyde and oxidized glutathione, gene expression of NADPH oxidase, and activity of lipoxygenase, but were decreased by the addition of AgNP. The results indicated that exogenous application of AgNP provided tolerance against F-toxicity via enhancing the levels of proline, total and reduced glutathione, glyoxalase I and II activities, and expression of pyrroline-5-carboxylate synthetase gene. Conducted study uniquely suggested potential role of AgNP in the remediation of F-toxicity, at least in the Cajanus cajan L. radicles. Further research would be intended to unravel the molecular mechanism(s) involved precisely in the AgNP mediated alleviation of F-toxicity.


Assuntos
Cajanus/efeitos dos fármacos , Fluoretos/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Prata/administração & dosagem , Biomarcadores/metabolismo , Cajanus/genética , Cajanus/metabolismo , Glutationa/metabolismo , Lactoilglutationa Liase/metabolismo , Lipoxigenase/metabolismo , Malondialdeído/metabolismo , NADPH Oxidases/genética , Proteínas de Plantas/metabolismo , Tioléster Hidrolases/metabolismo
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 179: 155-162, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28242444

RESUMO

The determination of thiol based biological molecules and drugs, such as cysteine (Cys) (I), α-lipoic acid (II), and sodium 2-sulfanylethane sulphonate (Mesna (III)) in human plasma are becoming progressively more important due to the growing body of knowledge about their essential role in numerous biological pathways. Herein we demonstrate a sensitive colorimetric sensor for the determination of medicinally important thiol drugs based on aggregation of the citrate capped silver nanoparticles (Ag NPs). This approach exploited the high affinity of thiols towards the Ag NPs surface which could tempt replacement of the citrate shell by the thiolate shell of target molecules, resulting in aggregation of the NPs through intermolecular electrostatic interaction or hydrogen-bonding. Because of aggregation, the plasmon band at around 400nm decreases gradually, along with the appearance of a new band connoting a red shift. The calibration curves are derived from the intensity ratios of A530/A400, which display a linear relation in the range of 1µM-150µM, 5µM-200µM and 10µM-130µM, respectively. The obtained detection limits (3σ) were found to be 1.5µM, 5.6µM and 10.2µM for compound I-III, respectively. The proposed method has been successfully applied for the detection of thiol compounds in real samples.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Espectrofotometria/métodos , Compostos de Sulfidrila/química , Calibragem , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Concentração Osmolar , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Sulfidrila/urina , Ressonância de Plasmônio de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA