Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 179(1): 265-279, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30409857

RESUMO

The shoot apical meristem (SAM) enables the formation of new organs throughout the life of a plant. ERECTA family (ERf) receptors restrict SAM size and promote initiation of leaves while simultaneously supporting establishment of correct phyllotaxy. In the epidermis and during organ elongation ERf activity is regulated by a family of Epidermal Patterning Factor-Like (EPFL) secreted Cys-rich small proteins. Here we show that ERfs play a critical role in communication between the SAM leaf boundary and the central zone in Arabidopsis (Arabidopsis thaliana). Ectopic expression of ERECTA in the central zone using the CLAVATA3 promoter is sufficient to restrict meristem size and promote leaf initiation. Genetic analysis demonstrated that four putative ligands: EPFL1, EPFL2, EPFL4, and EPFL6 function redundantly in the SAM. These genes are expressed at the SAM-leaf boundary and in the peripheral zone. Previously EPFL4 and EPFL6 have been linked with elongation of aboveground organs. Here we demonstrate that EPFL1 and EPFL2 promote organ elongation as well. In addition, we show that expression of ERECTA in the central zone of the SAM has a strong impact on elongation of internodes and pedicels and growth of leaves. These results suggest that ERfs can stimulate organ growth cell nonautonomously.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/genética , Meristema/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Transdução de Sinais
2.
Plant Physiol ; 171(2): 974-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208238

RESUMO

GPI-anchored proteins (GPI-APs) are essential for plant growth and development; knockout mutations in enzymes responsible for anchor biosynthesis or attachment are gametophyte or embryo lethal. In a genetic screen targeted to identify genes regulating stomata formation, we discovered a missense mutation in the Arabidopsis (Arabidopsis thaliana) homolog of GPI8/PIG-K, a Cys protease that transfers an assembled GPI anchor to proteins. The Arabidopsis genome has a single copy of AtGPI8, and the atgpi8-1 mutation reduces the efficiency of this enzyme, leading to reduced accumulation of GPI-anchored proteins. While the atgpi8-1 mutation strongly disrupts plant growth, it is not lethal. Phenotypic analysis of atgpi8-1 mutants suggests that GPI-APs are important for root and shoot growth, stomata formation, apical dominance, transition to flowering, and male gametophyte viability. In addition, atgpi8-1 mutants accumulate higher levels of callose and have reduced plasmodesmata permeability. Genetic interactions of atgpi8-1 with mutations in ERECTA family (ERf) genes suggest the existence of a GPI-AP in a branch of the ERf signaling pathway that regulates stomata formation. Activation of the ERf signal transduction cascade by constitutively active YODA rescues stomata clustering in atgpi8-1, indicating that a GPI-AP functions upstream of the MAP kinase cascade. TOO MANY MOUTHS (TMM) is a receptor-like protein that is able to form heterodimers with ERfs. Our analysis demonstrates that tmm-1 is epistatic to atgpi8-1, indicating that either TMM is a GPI-AP or there is another GPI-AP regulating stomata development whose function is dependent upon TMM.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cisteína Proteases/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Domínio Catalítico , Cisteína Proteases/genética , Fertilidade , Glucanos/metabolismo , Mutação , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/ultraestrutura , Plasmodesmos/metabolismo , Pólen , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/ultraestrutura , Alinhamento de Sequência , Transdução de Sinais
3.
J Exp Bot ; 68(7): 1507-1518, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28207053

RESUMO

In plants, extracellular signals are primarily sensed by plasma membrane-localized receptor-like kinases (RLKs). ERECTA is a leucine-rich repeat RLK that together with its paralogs ERECTA-like 1 (ERL1) and ERL2 regulates multiple aspects of plant development. ERECTA forms complexes with a range of co-receptors and senses secreted cysteine-rich small proteins from the EPF/EPFL family. Currently the mechanism of the cytoplasmic domain activation and transmission of the signal by ERECTA is unclear. To gain a better understanding we performed a structure-function analysis by introducing altered ERECTA genes into erecta and erecta erl1 erl2 mutants. These experiments indicated that ERECTA's ability to phosphorylate is functionally significant, and that while the cytoplasmic juxtamembrane domain is important for ERECTA function, the C-terminal tail is not. An analysis of multiple putative phosphorylation sites identified four amino acids in the activation segment of the kinase domain as functionally important. Homology of those residues to functionally significant amino acids in multiple other plant RLKs emphasizes similarities in RLK function. Specifically, our data predicts Thr812 as a primary site of phosphor-activation and potential inhibitory phosphorylation of Tyr815 and Tyr820. In addition, our experiments suggest that there are differences in the molecular mechanism of ERECTA function during regulation of stomata development and in elongation of above-ground organs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Domínio Catalítico , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Fosforilação , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Alinhamento de Sequência , Transdução de Sinais/fisiologia
4.
Hortic Res ; 9: uhac084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669706

RESUMO

Lycopene content in tomato fruit is largely under genetic control and varies greatly among genotypes. Continued improvement of lycopene content in elite varieties with conventional breeding has become challenging, in part because little is known about the underlying molecular mechanisms in high-lycopene tomatoes (HLYs). We collected 42 HLYs with different genetic backgrounds worldwide. High-performance liquid chromatography (HPLC) analysis revealed lycopene contents differed among the positive control wild tomato Solanum pimpinellifolium, HLYs, the normal lycopene cultivar "Moneymaker", and the non-lycopene cultivar NC 1Y at the pink and red ripe stages. Real-time RT-PCR analysis of expression of the 25 carotenoid biosynthesis pathway genes of each genotype showed a significantly higher expression in nine upstream genes (GGPPS1, GGPPS2, GGPPS3, TPT1, SSU II, PSY2, ZDS, CrtISO and CrtISO-L1 but not the well-studied PSY1, PDS and Z-ISO) at the breaker and/or red ripe stages in HLYs compared to Moneymaker, indicating a higher metabolic flux flow into carotenoid biosynthesis pathway in HLYs. Further conversion of lycopene to carotenes may be prevented via the two downstream genes (ß-LCY2 and ε-LCY), which had low-abundance transcripts at either or both stages. Additionally, the significantly higher expression of four downstream genes (BCH1, ZEP, VDE, and CYP97C11) at either or both ripeness stages leads to significantly lower fruit lycopene content in HLYs than in the wild tomato. This is the first systematic investigation of the role of the complete pathway genes in regulating fruit lycopene biosynthesis across many HLYs, and enables tomato breeding and gene editing for increased fruit lycopene content.

5.
Curr Opin Plant Biol ; 63: 102036, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33930839

RESUMO

Synthetic biology approaches are highly sought-after to facilitate the regulation of targeted gene expression in plants for functional genomics research and crop trait improvement. To date, synthetic regulation of gene expression predominantly focuses at the transcription level via engineering of synthetic promoters and transcription factors, while pioneering examples have started to emerge for synthetic regulation of gene expression at the levels of mRNA stability, translation, and protein degradation. This review discusses recent advances in plant synthetic biology for the regulation of gene expression at multiple levels, and highlights their future directions.


Assuntos
Plantas , Biologia Sintética , Regulação da Expressão Gênica , Plantas/genética , Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Hortic Res ; 8(1): 179, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333545

RESUMO

Computational tool-assisted primer design for real-time reverse transcription (RT) PCR (qPCR) analysis largely ignores the sequence similarities between sequences of homologous genes in a plant genome. It can lead to false confidence in the quality of the designed primers, which sometimes results in skipping the optimization steps for qPCR. However, the optimization of qPCR parameters plays an essential role in the efficiency, specificity, and sensitivity of each gene's primers. Here, we proposed an optimized approach to sequentially optimizing primer sequences, annealing temperatures, primer concentrations, and cDNA concentration range for each reference (and target) gene. Our approach started with a sequence-specific primer design that should be based on the single-nucleotide polymorphisms (SNPs) present in all the homologous sequences for each of the reference (and target) genes under study. By combining the efficiency calibrated and standard curve methods with the 2-ΔΔCt method, the standard cDNA concentration curve with a logarithmic scale was obtained for each primer pair for each gene. As a result, an R2 ≥ 0.9999 and the efficiency (E) = 100 ± 5% should be achieved for the best primer pair of each gene, which serve as the prerequisite for using the 2-ΔΔCt method for data analysis. We applied our newly developed approach to identify the best reference genes in different tissues and at various inflorescence developmental stages of Tripidium ravennae, an ornamental and biomass grass, and validated their utility under varying abiotic stress conditions. We also applied this approach to test the expression stability of six reference genes in soybean under biotic stress treatment with Xanthomonas axonopodis pv. glycines (Xag). Thus, these case studies demonstrated the effectiveness of our optimized protocol for qPCR analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA