Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(11): 8082-8089, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36876720

RESUMO

A simple heuristic model was developed for estimating the entropy of a solute molecule in an ideal solution based on quantum mechanical calculations with polarizable continuum models (QM/PCMs). A translational term was incorporated that included free-volume compensation for the Sackur-Tetrode equation and a rotational term was modeled based on the restricted rotation of a dipole in an electrostatic field. The configuration term for the solute at a given concentration was calculated using a simple lattice model that considered the number of configurations of the solute within the lattice. The configurational entropy was ascertained from this number based on Boltzmann's principle. Standard entropy values were determined for 41 combinations of solutes and solvents at a set concentration of 1 mol dm-3 using the proposed model, and the computational values were compared with experimental data. QM/PCM calculations were conducted at the ωB97X-D/6-311++G(d,p)/IEF-PCM level using universal force field van der Waals radii scaled by 1.2. The proposed model accurately reproduced the entropy values reported for solutes in non-aqueous solvents within a mean absolute deviation of 9.2 J mol-1 K-1 for 33 solutions. This performance represents a considerable improvement relative to that obtained using the method based on the ideal gas treatment that is widely utilized in commercially available computation packages. In contrast, computations for aqueous molecules overestimated the entropies because hydrophobic effects that decrease the entropy of aqueous solutions were not included in the present model.

2.
Phys Chem Chem Phys ; 21(35): 18920-18929, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453591

RESUMO

A simple model based on a quantum chemical approach with polarizable continuum models (PCMs) to provide reasonable translational and rotational entropies for liquid phase molecules was developed. A translational term was evaluated with free-volume compensation for the Sackur-Tetrode equation. We assumed that the free-volume corresponds to the cavity volume in the PCM. A rotational term was modeled as restricted rotation of a dipole in the electrostatic field. Entropies were assessed for twenty species in the liquid-phase using the proposed model, and the computed values were compared with experimental values. Quantum chemistry calculations were conducted at the ωB97X-D/6-311++G(d,p) level with the conductor-like PCM method. Predicted entropies were in good agreement with the experimental entropies, and the root mean square deviation was 17.2 J mol-1 K-1. The standard enthalpy change of formation was then investigated for eleven specific species. The CBS-QB3//ωB97X-D method provides a reasonable standard enthalpy of formation for gasified species; however, improvement of the accuracy is required for liquid species. Finally, the dependence of the Gibbs energy on temperature was investigated for the eleven specific species. When the ideal gas treatment is used, the Gibbs energy trends for the gaseous and liquid phases are quasi-parallel for all of the species, although the Gibbs energy trends for liquids based on the proposed model intersected the gaseous trend (i.e. the intersection is the boiling point). However, the model significantly under or overestimated the experimental boiling points. The error of the boiling points was predominantly due to the inaccuracy of the enthalpy.

3.
J Phys Chem A ; 119(28): 7659-67, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25970048

RESUMO

The reactions of NO2 with cis-/trans-CH3NHNH, CH3NNH2 and CH2NHNH2 have been studied theoretically by quantum chemical calculations and steady-state unimolecular master equation analysis based on RRKM theory. The barrier heights for the roaming transition states between nitro (RNO2) and nitrite (RONO) isomerization reactions and those for the concerted HONO and HNO2 elimination reactions from RNO2 and RONO, affect the pressure dependences of the product-specific rate coefficients. At ambient temperature and pressure, the dominant product of the reactions of NO2 with cis-/trans-CH3NHNH and CH2NHNH2 would be expected to be HONO with trans-CH3NNH and CH2NNH2, respectively, whereas it is CH3N(NH2)NO2 for CH3NNH2 + NO2. The product-specific rate coefficients for the titled and related reactions on the same potential energy surfaces were proposed for kinetics modeling.

4.
Anal Chem ; 84(11): 5007-16, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22582767

RESUMO

The most basic chemistry of products formation in hydrocarbons pyrolysis has been explored via a comparative experimental study on the roles of fundamental sp, sp(2), and sp(3) hydrocarbon radicals/intermediates such as ethyne/ethynyl (C(2)H(2)/C(2)H), ethene/ethenyl (C(2)H(4)/C(2)H(3)), and methane/methyl (CH(4)/CH(3)) in products formations. By using an in situ time-of-flight mass spectrometry technique, gas-phase products of pyrolysis of acetylene (ethyne, C(2)H(2)), ethylene (ethene, C(2)H(4)), and acetone (propanone, CH(3)COCH(3)) were detected and found to include small aliphatic products to large polycyclic aromatic hydrocarbons (PAHs) of mass 324 amu. Observed products mass spectra showed a remarkable sequence of mass peaks at regular mass number intervals of 24, 26, or 14 indicating the role of the particular corresponding radicals, ethynyl (C(2)H), ethenyl (C(2)H(3)), or methyl (CH(3)), in products formation. The analysis of results revealed the following: (a) product formation in hydrocarbon pyrolysis is dominated by hydrogen abstraction and a vinyl (ethenyl, C(2)H(3)) radical addition (HAVA) mechanism, (b) contrary to the existing concept of termination of products mass growth at cyclopenta fused species like acenaphthylene, novel pathways forming large PAHs were found succeeding beyond such cyclopenta fused species by the further addition of C(2)H(x) or CH(3) radicals, (c) production of cyclopenta ring-fused PAHs (CP-PAHs) such as fluoranthene/corannulene appeared as a preferred route over benzenoid species like pyrene/coronene, (d) because of the high reactivity of the CH(3) radical, it readily converts unbranched products into products with aliphatic chains (branched product), and (e) some interesting novel products such as dicarbon monoxide (C(2)O), tricarbon monoxide (C(3)O), and cyclic ketones were detected especially in acetone pyrolysis. These results finally suggest that existing kinetic models of product formation should be modified to include the reported novel species and their formation pathways. It is expected that outcomes of this study will be useful to understand the products formation from reactors to interstellar atmospheres as well as the growth mechanism of carbon nanomaterials.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/química , Acetona/química , Radicais Livres/química , Gases , Temperatura Alta , Cinética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
J Phys Chem A ; 115(21): 5284-93, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21545158

RESUMO

To date only one product, biphenyl, has been reported to be produced from C(6)H(5) + C(6)H(6)/C(6)H(5) reactions. In this study, we have investigated some unique products of C(6)H(5) + C(6)H(6)/C(6)H(5) reactions via both experimental observation and theoretical modeling. In the experimental study, gas-phase reaction products produced from the pyrolysis of selected aromatics and aromatic/acetylene mixtures were detected by an in situ technique, vacuum ultraviolet (VUV) single photon ionization (SPI) time-of-flight mass spectrometry (TOFMS). The mass spectra revealed a remarkable correlation in mass peaks at m/z = 154 {C(12)H(10) (biphenyl)} and m/z = 152 {C(12)H(8) (?)}. It also demonstrated an unexpected correlation among the HACA (hydrogen abstraction and acetylene addition) products at m/z = 78, 102, 128, 152, and 176. The analysis of formation routes of products suggested the contribution of some other isomers in addition to a well-known candidate, acenaphthylene, in the mass peak at m/z = 152 (C(12)H(8)). Considering the difficulties of identifying the contributing isomers from an observed mass number peak, quantum chemical calculations for the above-mentioned reactions were performed. As a result, cyclopenta[a]indene, as-indacene, s-indacene, biphenylene, acenaphthylene, and naphthalene appeared as novel products, produced from the possible channels of C(6)H(5) + C(6)H(6)/C(6)H(5) reactions rather than from their previously reported formation pathways. The most notable point is the production of acenaphthylene and naphthalene from C(6)H(5) + C(6)H(6)/C(6)H(5) reactions via the PAC (phenyl addition-cyclization) mechanism because, until now, both of them have been thought to be formed via the HACA routes. In this way, this study has paved the way for exploring alternative paths for other inefficient HACA routes using the PAC mechanism.

6.
Phys Chem Chem Phys ; 12(10): 2427-37, 2010 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-20449356

RESUMO

A highly efficient growth mechanism of polycyclic aromatic hydrocarbons (PAHs) initiated and accelerated by phenyl radicals has been investigated on the basis of kinetic analysis of gas phase reaction products of pyrolysis of benzene with and without addition of acetylene and acetylene only. Pyrolytic reactions were performed in a flow tube reactor and the resulting products were detected by an in situ direct sampling mass spectrometric technique using a vacuum ultraviolet (VUV) single photon ionization (SPI) time of flight mass spectrometry (TOFMS). The detected species varies from smaller to larger PAHs up to m/z = 454 (C(36)H(22)) including primary PAHs, polyphenyl-PAHs and cyclopentafused-PAHs (CP-PAHs). The peculiarity of this result is an appearance of mass peaks at regular mass number intervals of approximately 76 that correspond to phenyl-PAHs produced by phenyl radical addition (+C(6)H(5), +77) followed by hydrogen elimination (-H, -1). All such mass peaks were found diminishing with appearance of -2 mass number peaks with increasing temperatures, certainly due to a conversion of thermally rather unstable phenyl-PAHs into stable condensed PAHs through a dehydrocyclization (-H(2), -2) process. In the same way, in the case of only acetylene pyrolysis, mass peaks at regular mass number intervals of 24 corresponding to the HACA (hydrogen abstraction/C(2)H(2) addition) products, were observed. Kinetic analysis of formation pathways of those observed products showed the active role of PAC (phenyl addition/cyclization) because of its efficiency to continue the endless growth of PAHs, while the HACA was only found efficient for producing symmetrical PAHs by filling a triple fusing site (four carbon bay structure). Especially, acetylene was mixed with benzene to understand the impact of HACA on the PAC path ways that resulted in enhancement of phenyl-PAHs production in spite of trapping of active and chain carrier species phenyl radicals by C(2)H(2) to form phenylacetylene. The comparison of HACA and PAC concluded that PAC is a highly efficient mechanism for the growth of PAHs and lastly their combined roles in combustion have been discussed. Hopefully, PAC will be useful to understand the process of aromatic growth, from furnaces to stellar atmospheres.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/síntese química , Radicais Livres/síntese química , Radicais Livres/química , Cinética , Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/química , Temperatura
7.
J Phys Chem A ; 112(11): 2362-9, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18298104

RESUMO

To investigate the role of phenyl radical in the growth of PAHs (polycyclic aromatic hydrocarbons), pyrolysis of toluene with and without benzene has been studied by using a heatable tubular reactor couple with an in-situ sampling vacuum ultraviolet (VUV) single photon ionization (SPI) time-of-flight mass spectrometer (TOFMS) at temperatures 1155-1467 K and a pressure of 10.02 Torr with 0.56 s residence time. When benzene was added, a significant increase of phenyl addition products (biphenyl, terphenyl, and triphenylene) was observed and the mass spectra showed a clear regular sequence with an interval of approximately 74 mass number, corresponding to the phenyl addition (+C6H5) followed by H-elimination (-H) and cyclization (-H2). The analysis showed that the PAC (phenyl addition/cylization) mechanism is efficient for the growth of PAHs without a triple fusing site, for which the HACA (hydrogen abstraction/C2H2 addition) step is inefficient, and produces PAHs with five-membered rings. The PAC process was also suggested to be efficient in the subsequent growth of PAHs with five-membered rings. The role of the PAC mechanism in combustion conditions is discussed in relation to the importance of disordered five-membered ring structure in fullerene or soot core.

8.
J Phys Chem B ; 121(17): 4502-4511, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28368114

RESUMO

This work examined the reaction pathways involved in the initial decomposition of aqueous hydroxylamine solutions via the overall reaction, 2NH2OH → NH3 + HNO + H2O, using quantum chemistry calculations incorporating solvent effects. Several possible decomposition mechanisms were identified and investigated: three neutral-neutral bimolecular, two water-catalyzed, one neutral trimolecular, two ion-neutral bimolecular, and one cation-catalyzed. Optimized structures for the reactants, products, and transition states were obtained at the ωB97XD/6-311++G(d,p)/SCRF = (solvent = water) level of theory, and the total electron energies of such structures were calculated at the CBS-QB3 level of theory. The cation-catalyzed reaction 2NH2OH + NH3OH+ → NH4+ + HNO + H2O + NH2OH (maximum energy barrier (ΔE0‡) = 53.6 kJ/mol) and the anion-neutral bimolecular reaction NH2OH + NH2O- → NH3 + 1NO- + H2O (ΔE0‡ = 79.0 kJ/mol) were both found to be plausible candidates for the dominant step in the initial decomposition. The results of this study indicate that both acidic and basic conditions can affect the thermal stability of hydroxylamine in water.

9.
J Phys Chem B ; 110(37): 18515-20, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16970479

RESUMO

Understanding the mechanism of shock-induced chemical reaction in secondary explosives is necessary to pursue the development and the safe use of new explosives having high performance and low sensitivity. In an effort to understand the mechanism, the energy transfer rates of such secondary explosives as PETN(I), PETN(II), delta-HMX, alpha-HMX, beta-HMX, RDX, ANTA, DMN, and NM have been evaluated based on the formula derived by Fried and Ruggiero [Fried, L. E.; Ruggiero, A. J. J. Phys. Chem. 1994, 98, 9786]. The energy transfer rates were determined in terms of the density of vibrational states and the unharmonic vibron-phonon coupling term, which were calculated by using a flexible potential containing both intra- and intermolecular terms. For the secondary explosives, a good correlation was found between the energy transfer rates and the impact sensitivity. The energy transfer rates are several times faster for the explosives with higher sensitivity such as PETN, HMX, and RDX than those with lower sensitivity such as ANTA, DMN, and NM. The calculations presented suggest the energy transfer rate in secondary explosive crystals is a significant factor in their sensitivity and introduction of double bond, or hydrogen bonds, or caged structure into secondary explosives is expected to decrease the sensitivity.

10.
J Phys Chem B ; 110(47): 23655-9, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17125323

RESUMO

The crystal structure of the high-pressure phase of hexahydro-1,3,5-trinitro-1,3,5-triazine (gamma-RDX), which is stable above 4 GPa at room temperature, was investigated by using infrared spectroscopy and powder X-ray diffraction measurements followed by Rietveld refinements using a diamond anvil cell (DAC). Although gamma and alpha phases were found to belong to the same space group Pbca, they exhibited a different crystal packing. The molecular structure of the gamma phase exhibited the same conformation as that of the alpha phase; however, the torsion angles of N-NO2 changed marginally.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 65(3-4): 787-91, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16530001

RESUMO

The decomposition of trimethylsilane and tetramethylsilane has been investigated for the first time, using hot wire (catalytic) at various temperatures. Trimethylsilane is catalytic-dissociated in these species SiH(2), CH(3)SiH, CH(3), CH(2)Si. Time of flight mass spectroscopy signal of these species are linearly increasing with increasing catalytic-temperature. Time of flight mass spectroscopy (TOFMS) signals of (CH(3))(3)SiH and photodissociated into (CH(3))(2)SiH are decreasing with increasing hot filament temperature. TOFMS signal of (CH(3))(4)Si is decreasing with increasing hot wire temperature, but (CH(3))(3)Si signal is almost constant with increasing the temperature. We calculated activation energies of dissociated species of the parental molecules for fundamental information of reaction kinetics for the first time. Catalytic-dissociation of trimethylsilane, and tetramethylsilane single source time of flight coupled single photon VUV (118 nm) photoionization collisionless radicals at temperature range of tungsten filament 800-2360 K. The study is focused to understand the fundamental information on reaction kinetics of these molecules at hot wire temperature, and processes of catalytic-chemical vapour deposition (Cat-CVD) technique which could be implemented in amorphous and crystalline SiC semiconductors thin films.


Assuntos
Espectrometria de Massas/métodos , Compostos de Trimetilsilil/química , Catálise , Lasers , Fatores de Tempo , Raios Ultravioleta , Vácuo
12.
Anal Sci ; 19(8): 1109-13, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12945661

RESUMO

Vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS) has been applied for the detection of chlorobenzene, o-dichlorobenzene, and o-chlorophenol as surrogates for polychlorinated dibenzo-p-dioxine/furans (PCDD/F). The photoionization mass spectra of these compounds appear to be fragmentation free in the ionization processes by the VUV-SPI at 10.2 eV (121.6 nm). Quantum chemical calculations support no fragmentation in the photoionization of chlorobenzene derivatives at around 10 eV. The absolute photoionization cross-sections of chlorobenzene, o-dichlorobenzene, and o-chlorophenol were estimated at 10.2 eV. The photoionization cross-section is an important parameter in the detection of chlorobenzene derivatives by the single-photon ionization technique. The detection limit for chlorobenzene is on the order of tenth parts-per-billion volume (ppbv) in the present experimental setup.

13.
Rev Sci Instrum ; 82(2): 026112, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21361651

RESUMO

We performed miniature flyer impact experiments to investigate the relationship between the apparent (u(a)) and actual (u(A)) particle velocities measured by a velocity interferometer in single-crystal lithium fluoride (LiF) that was shock-compressed along the [100] axis. The miniature flyer was accelerated to velocities in the range 652.5-1937.6 m/s by a tabletop pulsed laser. An empirical relationship of u(a) = (1.2749 ± 0.0102)u(A) was obtained. The obtained relationship agreed well with the results of a previous study within the experimental errors and its uncertainty was less than ±1%. This result indicates that the present experimental technique is effective for measuring the relationship between u(a) and u(A) of shocked transparent materials with a comparable accuracy to conventional methods.

14.
J Am Soc Mass Spectrom ; 21(4): 534-44, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20149680

RESUMO

The role of methyl radicals in the networking of sp(2) carbons has been explored through kinetic analysis of mass spectra of the gas-phase products of the pyrolysis of toluene and toluene/acetone mixtures. Pyrolytic reactions were performed in a flow tube reactor at temperatures of 1140-1320 K and a constant total pressure of 10.38 Torr with a residence time of 0.585 s. On addition of acetone, methyl substituted products and their derivatives were enhanced. Mass peaks were observed in several sequences at an interval of 14 mass units; these ions correspond to methyl substituted products formed as a result of hydrogen abstraction (-H) followed by methyl radical addition (+CH(3)). Each major peak was usually preceded by a peak at two mass units lower, which was likely produced through dehydrogenation/dehydrocyclization (-H(2)) of methyl substituted products. Detected species include a large number of alkyl, cyclotetrafused (CT), cyclopentafused (CP) mono-, di-, and polycyclic aromatic hydrocarbons (PAHs) along with primary PAHs. The analysis showed that MAC (methyl addition/cyclization) has a unique capacity to induce the sequential growth of hexagonal networks of sp(2) carbons from all fusing sites of a PAH. Moreover, MAC was found capable of answering an important question in PAH growth, which is expansion of the CT --> CP --> hexagonal network for which other reported mechanisms are inefficient.


Assuntos
Cristalização/métodos , Espectrometria de Massas/métodos , Modelos Químicos , Hidrocarbonetos Policíclicos Aromáticos/química , Radicais Livres/química , Temperatura Alta , Metilação
15.
Phys Chem Chem Phys ; 11(33): 7318-23, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19672544

RESUMO

The product branching fractions for the reaction of atomic oxygen with ethene, O((3)P) + C(2)H(4)--> CH(3) + HCO (1a), --> H + CH(2)CHO (1b), --> H(2) + CH(2)CO (1c), have been investigated at room temperature (295 +/- 4 K) and pressures from 1 to 4 Torr (with N(2) or He buffer) by a laser photolysis-photoionization mass spectrometry method. From the yield of CH(3) radical, phi(CH(3)), the branching fraction for (1a) was determined to be 0.53 +/- 0.04 and no apparent pressure dependence was found from 1.5 to 4.0 Torr (N(2) buffer). The ratio of the HCO yield to that of CH(3), phi(HCO)/phi(CH(3)), was measured to be less than unity and increased as pressure increased (approximately 0.7 at 1 Torr and approximately 0.9 at 4 Torr [He]) suggesting prompt dissociation of the hot HCO radical (to H + CO) formed by channel (1a) at low pressures. An interpretation which reduces the large discrepancy among branching fractions reported for low pressure region is presented. The existence of the molecular H(2)-elimination channel (1c) was confirmed. The branching fraction for channel (1c) was determined to be 0.019 +/- 0.001 by the yield of CH(2)CO and was independent of pressure from 1.0 to 4.0 Torr (He buffer). As a side result, the yield of CH(3) radical from O((1)D) + C(2)H(4) reaction was also determined.

16.
Phys Chem Chem Phys ; 9(37): 5133-42, 2007 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-17878990

RESUMO

Group rate expressions for the hydrogen(H)-atom abstraction reactions from ethers by hydrogen atoms and hydroxyl(OH) radicals and the intramolecular hydrogen-transfer isomerization reactions of alkoxyalkylperoxy radicals, which result from the H-abstraction from ethers followed by the addition of O(2), have been evaluated based on the quantum chemical calculations and experimental data. With the relative method proposed in the present study, it was shown that the rate coefficients of the reactions, for which only poor experimental information is available, can be reliably evaluated by calculating and extracting the difference from the well-established reactions of alkane hydrocarbons. The major features on the H-abstraction reactions from O-adjacent sites of ethers compared to those from alkanes were the suppression of the activation energy due to the decrease of the C-H bond dissociation energy and non-next neighbor substituent effect from the alkyl group on the counter side of -O-. For the hydrogen transfer isomerization reactions, similar suppression of the activation energy as well as the change in the ring strain energy was found as a major feature.

17.
J Phys Chem A ; 111(34): 8308-24, 2007 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-17685593

RESUMO

The gas-phase reaction products of toluene pyrolysis with and without acetylene addition produced in a flow tube reactor at pressures of 8.15-15.11 Torr and temperatures of 1136-1507 K with constant residence time (0.56 s) have been detected in an in situ direct sampling mass spectrometric study by using a vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry technique. Those products range from methyl radical to large polycyclic aromatic hydrocarbons (PAHs) of mass 522 amu (C(42)H(18)) including smaller species, radicals, polyynes, and PAHs, together with ethynyl, methyl, and phenyl PAHs. On the basis of observed mass spectra, the chemical kinetic mechanisms of the formation of products are discussed. Especially, acetylene is mixed with toluene to understand the effect of the hydrogen abstraction and acetylene addition (HACA) mechanism on the formation pathways of products in toluene pyrolysis. The most prominent outputs of this work are the direct detection of large PAHs and new reaction pathways for the formation of PAHs with the major role of cyclopenta-fused radicals. The basis of this new reaction route is the appearance of different sequences of mass spectra that well explain the major role of aromatic radicals mainly cyclopenta fused radicals of PAHs resulting from their corresponding methyl PAHs, with active participation of c-C(5)H(5), C(6)H(5), C(6)H(5)CH(2) ,and C(9)H(7) in the formation of large PAHs. The role of the HACA only seemed important for the formation of stable condensed PAHs from unstable primary PAHs with zigzag structure (having triple fusing sites) in one step by ring growth with two carbon atoms.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/síntese química , Tolueno/química , Acetileno/química , Radicais Livres/química , Gases/química , Temperatura Alta , Espectrometria de Massas , Estrutura Molecular , Hidrocarbonetos Policíclicos Aromáticos/química
18.
J Phys Chem A ; 111(19): 3776-88, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17455918

RESUMO

Product formation pathways in the photolytically initiated oxidation of CH3OCH3 have been investigated as a function of temperature (298-600 K) and pressure (20-90 Torr) through the detection of HO2 and OH using Near-infrared frequency modulation spectroscopy, as well as the detection of CH3OCH2O2 using UV absorption spectroscopy. The reaction was initiated by pulsed photolysis with a mixture of Cl2, O2, and CH3OCH3. The HO2 and OH yield is obtained by comparison with an established reference mixture, including CH3OH. The CH3OCH2O2 yield is also obtained through the procedure of estimating the CH3OCH2O2/HO2 ratio from their UV absorption. A notable finding is that the OH yield is 1 order of magnitude larger than those known in C2 and C3 alkanes, increasing from 10% to 40% with increasing temperature. The HO2 yield increases gradually until 500 K and sharply up to 40% over 500 K. The CH3OCH2O2 profile has a prompt rise, followed by a gradual decay whose time constant is consistent with slow HO2 formation. To predict species profiles and yields, simple chlorine-initiated oxidation model of DME under low-pressure condition was constructed based on the existing model and the new reaction pathways, which were derived from this study. To model rapid OH formation, OH direct formation from CH3OCH2 + O2 was required. We have also proposed that a new HCO formation pathway via QOOH isomerization to HOQO species and OH + CH3OCH2O2 --> HO2 + CH3OCH2O are to be considered, to account for the fast and slow HO2 formations, as well as the total yield. The constructed model including these new pathways has successfully predicted experimental results throughout the entire temperature and pressure ranges investigated. It was revealed that the HO2 formation mechanism changes at 500 K, i.e., HCO + O2 via HCHO + OH and the above proposed direct HCO formation dominates over 500 K, while a series of reactions following CH3OCH2O2 self-reaction and OH + CH3OCH2O2 reaction mainly contribute below 500 K. The pressure dependent rate constant of the CH3OCH2 thermal decomposition reaction has been separately measured since it has large negative sensitivity for HO2 formation and is essential to eliminate the ambiguity in the CH3OCH2 + O2 mechanism at higher temperature.

19.
J Phys Chem A ; 111(29): 6622-7, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17388354

RESUMO

The kinetics and absolute rate constants of the gas-phase reaction of the hydroxymethyl radical (CH2OH) with molecular oxygen have been studied using laser photolysis/near-IR absorption spectroscopy. The reaction was tracked by monitoring the time-dependent changes in the production of the hydroperoxy radical (HO2) concentration. For sensitive detection of HO2, two-tone frequency modulation absorption spectroscopy was used in combination with a Herriott-type optical multipass absorption cell. Rate constants were determined as a function of temperature (236 K

20.
J Phys Chem A ; 110(14): 4726-31, 2006 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-16599440

RESUMO

Thermal decomposition of disilane was investigated using time-of-flight (TOF) mass spectrometry coupled with vacuum ultraviolet single-photon ionization (VUV-SPI) at a temperature range of 675-740 K and total pressure of 20-40 Torr. Si(n)H(m) species were photoionized by VUV radiation at 10.5 eV (118 nm). Concentrations of disilane and trisilane during thermal decomposition of disilane were quantitatively measured using the VUV-SPI method. Formation of Si(2)H(4) species was also examined. On the basis of pressure-dependent rate constants of disilane dissociation reported by Matsumoto et al. [J. Phys. Chem. A 2005, 109, 4911], kinetic simulation including gas-phase and surface reactions was performed to analyze thermal decomposition mechanisms of disilane. The branching ratio for (R1) Si(2)H(6) --> SiH(4) + SiH(2)/(R2) Si(2)H(6) --> H(2) + H(3)SiSiH was derived by the pressure-dependent rate constants. Temperature and reaction time dependences of disilane loss and formation of trisilane were well represented by the kinetic simulation. Comparison between the experimental results and the kinetic simulation results suggested that about 70% of consumed disilane was converted to trisilane, which was observed as one of the main reaction products under the present experimental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA