Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(52): e2308516120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127980

RESUMO

Methane emissions from plant foliage may play an important role in the global methane cycle, but their size and the underlying source processes remain poorly understood. Here, we quantify methane fluxes from the shoots of Scots pine trees, a dominant tree species in boreal forests, to identify source processes and environmental drivers, and we evaluate whether these fluxes can be constrained at the ecosystem-level by eddy covariance flux measurements. We show that shoot-level measurements conducted in forest, garden, or greenhouse settings; on mature trees and saplings; manually and with an automated CO2-, temperature-, and water-controlled chamber system; and with multiple methane analyzers all resulted in comparable daytime fluxes (0.144 ± 0.019 to 0.375 ± 0.074 nmol CH4 g-1 foliar d.w. h-1). We further find that these emissions exhibit a pronounced diurnal cycle that closely follows photosynthetically active radiation and is further modulated by temperature. These diurnal patterns indicate that methane production is associated with diurnal cycle of sunlight, indicating that this production is either a byproduct of photosynthesis-associated biochemical reactions (e.g., the methionine cycle) or produced through nonenzymatic photochemical reactions in plant biomass. Moreover, we identified a light-dependent component in stand-level methane fluxes, which showed order-of-magnitude agreement with shoot-level measurements (0.968 ± 0.031 nmol CH4 g-1 h-1) and which provides an upper limit for shoot methane emissions.


Assuntos
Ecossistema , Pinus sylvestris , Temperatura , Metano , Solo , Florestas , Árvores , Dióxido de Carbono
2.
New Phytol ; 242(6): 2440-2452, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549455

RESUMO

Shoot-level emissions of aerobically produced methane (CH4) may be an overlooked source of tree-derived CH4, but insufficient understanding of the interactions between their environmental and physiological drivers still prevents the reliable upscaling of canopy CH4 fluxes. We utilised a novel automated chamber system to continuously measure CH4 fluxes from the shoots of Pinus sylvestris (Scots pine) saplings under drought to investigate how canopy CH4 fluxes respond to the drought-induced alterations in their physiological processes and to isolate the shoot-level production of CH4 from soil-derived transport and photosynthesis. We found that aerobic CH4 emissions are not affected by the drought-induced stress, changes in physiological processes, or decrease in photosynthesis. Instead, these emissions vary on short temporal scales with environmental drivers such as temperature, suggesting that they result from abiotic degradation of plant compounds. Our study shows that aerobic CH4 emissions from foliage are distinct from photosynthesis-related processes. Thus, instead of photosynthesis rates, it is more reliable to construct regional and global estimates for the aerobic CH4 emission based on regional differences in foliage biomass and climate, also accounting for short-term variations of weather variables such as air temperature and solar radiation.


Assuntos
Secas , Metano , Fotossíntese , Pinus sylvestris , Brotos de Planta , Pinus sylvestris/fisiologia , Pinus sylvestris/metabolismo , Metano/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Aerobiose , Temperatura , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Biomassa
3.
Sensors (Basel) ; 24(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38894298

RESUMO

Exploring data aids in the comprehension of the dataset and the system's essence. Various approaches exist for managing numerous sensors. This study perceives operational states to clarify the physical dynamics within a soil environment. Utilizing Principal Component Analysis (PCA) enables dimensionality reduction, offering an alternative perspective on the spring soil dataset. The K-means algorithm clusters data densities, forming the groundwork for an operational state description. Soil data, integral to an ecosystem, entails evident attributes. Employing dynamic visualization, including animations, constitutes a vital exploration angle. Greenhouse gas variables have been added to PCA to achieve more understanding in the interconnection of gas exchange and soil properties. Pit data and flux data are analysed both separately and together using a data-driven approach. The results look promising, showing the potential to add new values and more detailed state structures to ecological models. All experiments are conducted within the Jupyter programming environment, utilizing Python 3. The relevant literature on data visualization is examined. Through combined techniques and tools, the potential features of the soil ecosystem are observed and identified.

4.
New Phytol ; 238(3): 1019-1032, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751911

RESUMO

Aerenchymatic transport is an important mechanism through which plants affect methane (CH4 ) emissions from peatlands. Controlling environmental factors and the effects of plant phenology remain, however, uncertain. We identified factors controlling seasonal CH4 flux rate and investigated transport efficiency (flux rate per unit of rhizospheric porewater CH4 concentration). We measured CH4 fluxes through individual shoots of Carex rostrata, Menyanthes trifoliata, Betula nana and Salix lapponum throughout growing seasons in 2020 and 2021 and Equisetum fluviatile and Comarum palustre in high summer 2021 along with water-table level, peat temperature and porewater CH4 concentration. CH4 flux rate of C. rostrata was related to plant phenology and peat temperature. Flux rates of M. trifoliata and shrubs B. nana and S. lapponum were insensitive to the investigated environmental variables. In high summer, flux rate and efficiency were highest for C. rostrata (6.86 mg m-2  h-1 and 0.36 mg m-2  h-1 (µmol l-1 )-1 , respectively). Menyanthes trifoliata showed a high flux rate, but limited efficiency. Low flux rates and efficiency were detected for the remaining species. Knowledge of the species-specific CH4 flux rate and their different responses to plant phenology and environmental factors can significantly improve the estimation of ecosystem-scale CH4 dynamics in boreal peatlands.


Assuntos
Ecossistema , Solo , Estações do Ano , Temperatura , Metano , Dióxido de Carbono , Áreas Alagadas
5.
New Phytol ; 235(1): 66-77, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35342950

RESUMO

Plants are recognized as sources of aerobically produced methane (CH4 ), but the seasonality, environmental drivers and significance of CH4 emissions from the canopies of evergreen boreal trees remain poorly understood. We measured the CH4 fluxes from the shoots of Pinus sylvestris (Scots pine) and Picea abies (Norway spruce) saplings in a static, non-steady-state chamber setup to investigate if the shoots of boreal conifers are a source of CH4 during spring. We found that the shoots of Scots pine emitted CH4 and these emissions correlated with the photosynthetically active radiation. For Norway spruce, the evidence for CH4 emissions from the shoots was inconclusive. Our study shows that the canopies of evergreen boreal trees are a potential source of CH4 in the spring and that these emissions are driven by a temperature-by-light interaction effect of solar radiation either directly or indirectly through its effects on tree physiological processes.


Assuntos
Picea , Pinus sylvestris , Pinus , Metano , Árvores
7.
Sci Total Environ ; 914: 169662, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159777

RESUMO

Plant-mediated CH4 transport (PMT) is the dominant pathway through which soil-produced CH4 can escape into the atmosphere and thus plays an important role in controlling ecosystem CH4 emission. PMT is affected by abiotic and biotic factors simultaneously, and the effects of biotic factors, such as the dominant plant species and their traits, can override the effects of abiotic factors. Increasing evidence shows that plant-mediated CH4 fluxes include not only PMT, but also within-plant CH4 production and oxidation due to the detection of methanogens and methanotrophs attached to the shoots. Despite the inter-species and seasonal differences, and the probable contribution of within-plant microbes to total plant-mediated CH4 exchange (PME), current process-based ecosystem models only estimate PMT based on the bulk biomass or leaf area index of aerenchymatous plants. We highlight five knowledge gaps to which more research efforts should be devoted. First, large between-species variation, even within the same family, complicates general estimation of PMT, and calls for further work on the key dominant species in different types of wetlands. Second, the interface (rhizosphere-root, root-shoot, or leaf-atmosphere) and plant traits controlling PMT remain poorly documented, but would be required for generalizations from species to relevant functional groups. Third, the main environmental controls of PMT across species remain uncertain. Fourth, the role of within-plant CH4 production and oxidation is poorly quantified. Fifth, the simplistic description of PMT in current process models results in uncertainty and potentially high errors in predictions of the ecosystem CH4 flux. Our review suggest that flux measurements should be conducted over multiple growing seasons and be paired with trait assessment and microbial analysis, and that trait-based models should be developed. Only then we are capable to accurately estimate plant-mediated CH4 emissions, and eventually ecosystem total CH4 emissions at both regional and global scales.


Assuntos
Ecossistema , Áreas Alagadas , Plantas/metabolismo , Biomassa , Metano/análise , Dióxido de Carbono/análise , Solo
8.
Sci Total Environ ; 901: 165421, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37474057

RESUMO

Managed boreal peatlands are widespread and economically important, but they are a large source of greenhouse gases (GHGs). Peatland GHG emissions are related to soil water-table level (WT), which controls the vertical distribution of aerobic and anaerobic processes and, consequently, sinks and sources of GHGs in soils. On forested peatlands, selection harvesting reduces stand evapotranspiration and it has been suggested that the resulting WT rise decreases soil net emissions, while the tree growth is maintained. We monitored soil concentrations of CO2, CH4, N2O and O2 by depth down to 80 cm, and CO2 and CH4 fluxes from soil in two nutrient-rich Norway spruce dominated peatlands in Southern Finland to examine the responses of soil GHG dynamics to WT rise. Selection harvesting raised WT by 14 cm on both sites, on average, mean WTs of the monitoring period being 73 cm for unharvested control and 59 cm for selection harvest. All soil gas concentrations were associated with proximity to WT. Both CH4 and CO2 showed remarkable vertical concentration gradients, with high values in the deepest layer, likely due to slow gas transfer in wet peat. CH4 was efficiently consumed in peat layers near and above WT where it reached sub-atmospheric concentrations, indicating sustained oxidation of CH4 from both atmospheric and deeper soil origins also after harvesting. Based on soil gas concentration data, surface peat (top 25/30 cm layer) contributed most to the soil-atmosphere CO2 fluxes and harvesting slightly increased the CO2 source in deeper soil (below 45/50 cm), which could explain the small CO2 flux differences between treatments. N2O production occurred above WT, and it was unaffected by harvesting. Overall, the WT rise obtained with selection harvesting was not sufficient to reduce soil GHG emissions, but additional hydrological regulation would have been needed.

9.
Sci Total Environ ; 586: 858-869, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28215796

RESUMO

Restoration impact of forestry-drained peatlands on runoff water quality and dissolved organic carbon (DOC) and nutrient export was studied. Eight catchments were included: three mesotrophic (one undrained control, two treatments), two ombrotrophic (one drained control, one treatment) and three oligotrophic catchments (one undrained control, two treatments). Three calibration years and four post-restoration years were included in the data from seven catchments, for which runoff was recorded. For one mesotrophic treatment catchment only one year of pre-restoration and two years of post-restoration water quality data is reported. Restoration was done by filling in and damming the ditches. Water samples were collected monthly-biweekly during the snow-free period; runoff was recorded continuously during the same period. Water quality was estimated for winter using ratios derived from external data. Runoff for non-recorded periods were estimated using the FEMMA model. A high impact on DOC, nitrogen (N) and phosphorus (P) was observed in the mesotrophic catchments, and mostly no significant impact in the nutrient-poor catchments. The DOC load from one catchment exceeded 1000kg (restored-ha)-1 in the first year; increase of DOC concentration from 50 to 250mgl-1 was observed in the other mesotrophic treatment catchment. Impact on total nitrogen export of over 30kg (restored-ha)-1 was observed in one fertile catchment during the first year. An impact of over 5kg (restored-ha)-1 on ammonium export was observed in one year in the mesotrophic catchment. Impact on P export from the mesotrophic catchment was nearly 5kg P (restored-ha)-1 in the first year. The results imply that restoration of nutrient-rich forestry-drained peatlands poses significant risk for at least short term elevated loads degrading the water quality in receiving water bodies. Restoration of nutrient-poor peatlands poses a minor risk in comparison. Research is needed regarding the factors behind these risks and how to mitigate them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA