RESUMO
High-quality van der Waals heterostructures assembled from hBN-encapsulated monolayer transition metal dichalcogenides enable observations of subtle optical and spin-valley properties whose identification was beyond the reach of structures exfoliated directly on standard SiO2/Si substrates. Here, we describe different van der Waals heterostructures based on uncapped single-layer MoS2 stacked onto hBN layers of different thicknesses and hBN-encapsulated monolayers. Depending on the doping level, they reveal the fine structure of excitonic complexes, i.e. neutral and charged excitons. In the emission spectra of a particular MoS2/hBN heterostructure without an hBN cap we resolve two trion peaks, T1 and T2, energetically split by about 10 meV, resembling the pair of singlet and triplet trion peaks (T S and T T ) in tungsten-based materials. The existence of these trion features suggests that monolayer MoS2 has a dark excitonic ground state, despite having a 'bright' single-particle arrangement of spin-polarized conduction bands. In addition, we show that the effective excitonic g-factor significantly depends on the electron concentration and reaches the lowest value of -2.47 for hBN-encapsulated structures, which reveals a nearly neutral doping regime. In the uncapped MoS2 structures, the excitonic g-factor varies from -1.15 to -1.39 depending on the thickness of the bottom hBN layer and decreases as a function of rising temperature.
RESUMO
At cryogenic temperatures, the photoluminescence (PL) spectrum of monolayer WSe2 features a number of lines related to the recombination of so-called localized excitons (LEs). The intensity of these lines strongly decreases with increasing temperature. In order to understand the mechanism behind this phenomenon we carried out a time-resolved experiment, which revealed a similar trend in the PL decay time. Our results identify the opening of additional non-radiative relaxation channels as a primary cause of the observed temperature quenching of the LEs' PL.
Assuntos
Calcogênios/química , Compostos de Tungstênio/química , Medições Luminescentes , TemperaturaRESUMO
Monolayers of semiconducting transition metal dichalcogenides are two-dimensional direct-gap systems which host tightly bound excitons with an internal degree of freedom corresponding to the valley of the constituting carriers. Strong spin-orbit interaction and the resulting ordering of the spin-split subbands in the valence and conduction bands makes the lowest-lying excitons in WX_{2} (X being S or Se) spin forbidden and optically dark. With polarization-resolved photoluminescence experiments performed on a WSe_{2} monolayer encapsulated in a hexagonal boron nitride, we show how the intrinsic exchange interaction in combination with the applied in-plane and/or out-of-plane magnetic fields enables one to probe and manipulate the valley degree of freedom of the dark excitons.
RESUMO
Achieving significant doping in GaAs/AlAs core/shell nanowires (NWs) is of considerable technological importance but remains a challenge due to the amphoteric behavior of the dopant atoms. Here we show that placing a narrow GaAs quantum well in the AlAs shell effectively getters residual carbon acceptors leading to an unintentional p-type doping. Magneto-optical studies of such a GaAs/AlAs core-multishell NW reveal quantum confined emission. Theoretical calculations of NW electronic structure confirm quantum confinement of carriers at the core/shell interface due to the presence of ionized carbon acceptors in the 1 nm GaAs layer in the shell. Microphotoluminescence in high magnetic field shows a clear signature of avoided crossings of the n = 0 Landau level emission line with the n = 2 Landau level TO phonon replica. The coupling is caused by the resonant hole-phonon interaction, which points to a large two-dimensional hole density in the structure.
RESUMO
We present direct observation of a coherent spin precession of an individual Mn^{2+} ion, having both electronic and nuclear spins equal to 5/2, embedded in a CdTe quantum dot and placed in a magnetic field. The spin state evolution is probed in a time-resolved pump-probe measurement of absorption of the single dot. The experiment reveals subtle details of the large-spin coherent dynamics, such as nonsinusoidal evolution of states occupation, and beatings caused by the strain-induced differences in energy levels separation. Sensitivity of the large-spin impurity on the crystal strain opens the possibility of using it as a local strain probe.
RESUMO
Magneto-Raman-scattering experiments from the surface of graphite reveal novel features associated to purely electronic excitations which are observed in addition to phonon-mediated resonances. Graphene-like and graphite domains are identified through experiments with â¼1 µm spatial resolution performed in magnetic fields up to 32 T. Polarization resolved measurements emphasize the characteristic selection rules for electronic transitions in graphene. Graphene on graphite displays the unexpected hybridization between optical phonon and symmetric across the Dirac point inter Landau level transitions. The results open new experimental possibilities--to use light scattering methods in studies of graphene under quantum Hall effect conditions.
RESUMO
We show theoretically and experimentally the existence of a new quantum-interference effect between the electron-hole interactions and the scattering by a single Mn impurity. The theoretical model, including electron-valence-hole correlations, the short- and long-range exchange interaction of a Mn ion with the heavy hole and with electron and anisotropy of the quantum dot, is compared with photoluminescence spectroscopy of CdTe dots with single magnetic ions. We show how the design of the electronic levels of a quantum dot enables the design of an exciton, control of the quantum interference, and hence engineering of light-Mn interaction.
RESUMO
We study the carrier dynamics in epitaxially grown graphene in the range of photon energies from 10 to 250 meV. The experiments complemented by microscopic modeling reveal that the carrier relaxation is significantly slowed down as the photon energy is tuned to values below the optical-phonon frequency; however, owing to the presence of hot carriers, optical-phonon emission is still the predominant relaxation process. For photon energies about twice the value of the Fermi energy, a transition from pump-induced transmission to pump-induced absorption occurs due to the interplay of interband and intraband processes.
RESUMO
Zeeman effect induced by the magnetic field introduces a splitting between the two valleys at K + and K - points of the Brillouin zone in monolayer semiconducting transition metal dichalcogenides. In consequence, the photoluminescence signal exhibits a field dependent degree of circular polarization. We present a comprehensive study of this effect in the case of a trion in monolayer MoTe2, showing that although time integrated data allows us to deduce a g-factor of the trion state, such an analysis cannot be substantiated by the timescales revealed in the time-resolved experiments.
RESUMO
Two-dimensional layered materials offer the possibility to create artificial vertically stacked structures possessing an additional degree of freedom-the interlayer twist. We present a comprehensive optical study of artificially stacked bilayers (BLs) MoS[Formula: see text] encapsulated in hexagonal BN with interlayer twist angle ranging from 0[Formula: see text] to 60[Formula: see text] using Raman scattering and photoluminescence spectroscopies. It is found that the strength of the interlayer coupling in the studied BLs can be estimated using the energy dependence of indirect emission versus the A[Formula: see text]-E[Formula: see text] energy separation. Due to the hybridization of electronic states in the valence band, the emission line related to the interlayer exciton is apparent in both the natural (2H) and artificial (62[Formula: see text]) MoS[Formula: see text] BLs, while it is absent in the structures with other twist angles. The interlayer coupling energy is estimated to be of about 50 meV. The effect of temperature on energies and intensities of the direct and indirect emission lines in MoS[Formula: see text] BLs is also quantified.
RESUMO
Atomically thin materials, like semiconducting transition metal dichalcogenides (S-TMDs), are highly sensitive to the environment. This opens up an opportunity to externally control their properties by changing their surroundings. Photoluminescence and reflectance contrast techniques are employed to investigate the effect of metallic substrates on optical properties of MoSe2 monolayer (ML). The optical spectra of MoSe2 MLs deposited on Pt, Au, Mo and Zr have distinctive metal-related lineshapes. In particular, a substantial variation in the intensity ratio and the energy separation between a negative trion and a neutral exciton is observed. It is shown that using metals as substrates affects the doping of S-TMD MLs. The explanation of the effect involves the Schottky barrier formation at the interface between the MoSe2 ML and the metallic substrates. The alignment of energy levels at the metal/semiconductor junction allows for the transfer of charge carriers between them. We argue that a proper selection of metallic substrates can be a way to inject appropriate types of carriers into the respective bands of S-TMDs.
RESUMO
Low temperature and polarization resolved magneto-photoluminescence experiments are used to investigate the properties of dark excitons and dark trions in a monolayer of WS2 encapsulated in hexagonal BN (hBN). We find that this system is an n-type doped semiconductor and that dark trions dominate the emission spectrum. In line with previous studies on WSe2, we identify the Coulomb exchange interaction coupled neutral dark and grey excitons through their polarization properties, while an analogous effect is not observed for dark trions. Applying the magnetic field in both perpendicular and parallel configurations with respect to the monolayer plane, we determine the g-factor of dark trions to be g â¼ -8.6. Their decay rate is close to 0.5 ns, more than 2 orders of magnitude longer than that of bright excitons.
RESUMO
Magneto-Raman scattering study of the E2g optical phonons in multilayer epitaxial graphene grown on a carbon face of SiC is presented. At 4.2 K in magnetic field up to 33 T, we observe a series of well-pronounced avoided crossings each time the optically active inter-Landau level transition is tuned in resonance with the E2g phonon excitation (at 196 meV). The width of the phonon Raman scattering response also shows pronounced variations and is enhanced in conditions of resonance. The experimental results are well reproduced by a model that gives directly the strength of the electron-phonon interaction.
RESUMO
Unlike monolayers of transition metal dichalcogenides such as MoS2, which possess high in-plane symmetry, layered ReS2 exhibits reduced in-plane crystal symmetry with a distorted 1 T structure. This unique symmetry leads to anisotropic optical properties, very promising for light polarization devices. Here, we report on low temperature polarization-resolved emission and absorption measurements of excitons in ReS2 from bulk to monolayer. In photoluminescence and reflectivity contrast spectra we distinguish two strongly polarized excitons X1 and X2 with dipole vectors along different crystal directions, which persist from bulk down to monolayer. Basing on the PL and RC spectra of bulk crystals we determine the energy of the ground and first four excited states of both excitons, which follow the usual hydrogenic Rydberg series of energy levels of 3D excitonic states (En = Ry*/n2). From the numerical fit we estimate that the energy gap is direct and equal to 1671.7 meV and binding energy of X1 and X2 is equal to 117.5 and 86.6 meV, respectively. In magneto-PL spectra of bulk ReS2 up to B = 10 T, the energy shift of all the states is below 2 meV. On reducing the crystal thickness from bulk to monolayer the ground state experience a strong blue shift.
RESUMO
Owing to exchange interaction between the exciton and magnetic ion, a quantum dot embedding a single magnetic ion is a great platform for optical control of individual spin. In particular, a quantum dot provides strong and sharp optical transitions, which give experimental access to spin states of an individual magnetic ion. We show, however, that physics of quantum dot excitons also complicate spin readout and optical spin manipulation in such a system. This is due to electron-hole exchange interaction in anisotropic quantum dots, which affects the polarisation of the emission lines. One of the consequences is that the intensity of spectral lines in a single spectrum are not simply proportional to the population of various spin states of magnetic ion. In order to provide a solution of the above problem, we present a method of extracting both the spin polarisation degree of a neutral exciton and magnetic dopant inside a semiconductor quantum dot in an external magnetic field. Our approach is experimentally verified on a system of CdSe/ZnSe quantum dot containing a single Fe2+ ion. Both the resonant and non-resonant excitation regimes are explored resulting in a record high optical orientation efficiency of dopant spin in the former case. The proposed solutions can be easily expanded to any other system of quantum dots containing magnetic dopants.
RESUMO
We provide a theoretical description of the optical orientation of a single Mn2+ ion spin under quasi-resonant excitation demonstrated experimentally by Goryca et al (2009 Phys. Rev. Lett. 103 087401). We build and analyze a hierarchy of models by starting with the simplest assumptions (transfer of perfectly spin-polarized excitons from Mn-free dot to the other dot containing a single Mn2+ spin, followed by radiative recombination) and subsequently adding more features, such as spin relaxation of electrons and holes. Particular attention is paid to the role of the influx of the dark excitons and the process of biexciton formation, which are shown to contribute significantly to the orientation process in the quasi-resonant excitation case. Analyzed scenarios show how multiple features of the excitonic complexes in magnetically-doped quantum dots, such as the values of exchange integrals, spin relaxation times, etc, lead to a plethora of optical orientation processes, characterized by distinct dependencies on light polarization and laser intensity, and occurring on distinct timescales. Comparison with experimental data shows that the correct description of the optical orientation mechanism requires taking into account Mn2+ spin-flip processes occurring not only when the exciton is already in the orbital ground state of the light-emitting dot, but also those that happen during the exciton transfer from high-energy states to the ground state. Inspired by the experimental results on energy relaxation of electrons and holes in nonmagnetic dots, we focus on the process of biexciton creation allowed by mutual spin-flip of an electron and the Mn2+ spin, and we show that by including it in the model, we obtain good qualitative and quantitative agreement with the experimental data on quasi-resonantly driven Mn2+ spin orientation.
RESUMO
The family of organic-inorganic tri-halide perovskites including MA (MethylAmmonium)PbI3, MAPbI3-xClx, FA (FormAmidinium)PbI3 and FAPbBr3 are having a tremendous impact on the field of photovoltaic cells due to the combination of their ease of deposition and high energy conversion efficiencies. Device performance, however, is known to be still significantly affected by the presence of inhomogeneities. Here we report on a study of temperature dependent micro-photoluminescence which shows a strong spatial inhomogeneity related to the presence of microcrystalline grains, which can be both bright and dark. In all of the tri-iodide based materials there is evidence that the tetragonal to orthorhombic phase transition observed around 160 K does not occur uniformly across the sample with domain formation related to the underlying microcrystallite grains, some of which remain in the high temperature, tetragonal, phase even at very low temperatures. At low temperature the tetragonal domains can be significantly influenced by local defects in the layers or the introduction of residual levels of chlorine in mixed halide layers or dopant atoms such as aluminium. We see that improvements in room temperature energy conversion efficiency appear to be directly related to reductions in the proportions of the layer which remain in the tetragonal phase at low temperature. In FAPbBr3 a more macroscopic domain structure is observed with large numbers of grains forming phase correlated regions.
RESUMO
Single impurities with nonzero spin and multiple ground states offer a degree of freedom that can be utilized to store the quantum information. However, Fe(2+) dopant is known for having a single nondegenerate ground state in the bulk host semiconductors and thus is of little use for spintronic applications. Here we show that the well-established picture of Fe(2+) spin configuration can be modified by subjecting the Fe(2+) ion to high strain, for example, produced by lattice mismatched epitaxial nanostructures. Our analysis reveals that high strain induces qualitative change in the ion energy spectrum and results in nearly doubly degenerate ground state with spin projection Sz= ± 2. We provide an experimental proof of this concept using a new system: a strained epitaxial quantum dot containing individual Fe(2+) ion. Magnetic character of the Fe(2+) ground state in a CdSe/ZnSe dot is revealed in photoluminescence experiments by exploiting a coupling between a confined exciton and the single-iron impurity. We also demonstrate that the Fe(2+) spin can be oriented by spin-polarized excitons, which opens a possibility of using it as an optically controllable two-level system free of nuclear spin fluctuations.
RESUMO
We present a comparative study of two self-assembled quantum dot (QD) systems based on II-VI compounds: CdTe/ZnTe and CdSe/ZnSe. Using magneto-optical techniques we investigated a large population of individual QDs. The systematic photoluminescence studies of emission lines related to the recombination of neutral exciton X, biexciton XX, and singly charged excitons (X(+), X(-)) allowed us to determine average parameters describing CdTe QDs (CdSe QDs): X-XX transition energy difference 12 meV (24 meV); fine-structure splitting δ1=0.14 meV (δ1=0.47 meV); g-factor g = 2.12 (g = 1.71); diamagnetic shift γ=2.5 µeV T(-2) (γ =1.3 µeV T(-2)). We find also statistically significant correlations between various parameters describing internal structure of excitonic complexes.
RESUMO
Crystal structure imperfections in solids often act as efficient carrier trapping centres, which, when suitably isolated, act as sources of single photon emission. The best known examples of such attractive imperfections are well-width or composition fluctuations in semiconductor heterostructures (resulting in the formation of quantum dots) and coloured centres in wide-bandgap materials such as diamond. In the recently investigated thin films of layered compounds, the crystal imperfections may logically be expected to appear at the edges of commonly investigated few-layer flakes of these materials exfoliated on alien substrates. Here, we report comprehensive optical micro-spectroscopy studies of thin layers of tungsten diselenide (WSe2), a representative semiconducting dichalcogenide with a bandgap in the visible spectral range. At the edges of WSe2 flakes (transferred onto Si/SiO2 substrates) we discover centres that, at low temperatures, give rise to sharp emission lines (100â µeV linewidth). These narrow emission lines reveal the effect of photon antibunching, the unambiguous attribute of single photon emitters. The optical response of these emitters is inherently linked to the two-dimensional properties of the WSe2 monolayer, as they both give rise to luminescence in the same energy range, have nearly identical excitation spectra and have very similar, characteristically large Zeeman effects. With advances in the structural control of edge imperfections, thin films of WSe2 may provide added functionalities that are relevant for the domain of quantum optoelectronics.