Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 50(4): 516-27, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23665230

RESUMO

Cue1p is an integral component of yeast endoplasmic reticulum (ER)-associated degradation (ERAD) ubiquitin ligase (E3) complexes. It tethers the ERAD ubiquitin-conjugating enzyme (E2), Ubc7p, to the ER and prevents its degradation, and also activates Ubc7p via unknown mechanisms. We have now determined the crystal structure of the Ubc7p-binding region (U7BR) of Cue1p with Ubc7p. The U7BR is a unique E2-binding domain that includes three α-helices that interact extensively with the "backside" of Ubc7p. Residues essential for E2 binding are also required for activation of Ubc7p and for ERAD. We establish that the U7BR stimulates both RING-independent and RING-dependent ubiquitin transfer from Ubc7p. Moreover, the U7BR enhances ubiquitin-activating enzyme (E1)-mediated charging of Ubc7p with ubiquitin. This demonstrates that an essential component of E3 complexes can simultaneously bind to E2 and enhance its loading with ubiquitin. These findings provide mechanistic insights into how ubiquitination can be stimulated.


Assuntos
Proteínas de Transporte/química , Proteínas de Membrana/química , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Enzimas de Conjugação de Ubiquitina/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Interações Hidrofóbicas e Hidrofílicas , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
2.
Mol Cell ; 34(6): 674-85, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19560420

RESUMO

The activity of RING finger ubiquitin ligases (E3) is dependent on their ability to facilitate transfer of ubiquitin from ubiquitin-conjugating enzymes (E2) to substrates. The G2BR domain within the E3 gp78 binds selectively and with high affinity to the E2 Ube2g2. Through structural and functional analyses, we determine that this occurs on a region of Ube2g2 distinct from binding sites for ubiquitin-activating enzyme (E1) and RING fingers. Binding to the G2BR results in conformational changes in Ube2g2 that affect ubiquitin loading. The Ube2g2:G2BR interaction also causes an approximately 50-fold increase in affinity between the E2 and RING finger. This results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger. The significance of this G2BR effect is underscored by enhanced ubiquitylation observed when Ube2g2 is paired with other RING finger E3s. These findings uncover a mechanism whereby allosteric effects on an E2 enhance E2-RING finger interactions and, consequently, ubiquitylation.


Assuntos
Receptores de Citocinas/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Domínios RING Finger , Receptores do Fator Autócrino de Motilidade , Receptores de Citocinas/metabolismo , Receptores de Citocinas/fisiologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
3.
Mol Biol Cell ; 18(1): 153-65, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17065559

RESUMO

The mechanism of protein quality control and elimination of misfolded proteins in the cytoplasm is poorly understood. We studied the involvement of cytoplasmic factors required for degradation of two endoplasmic reticulum (ER)-import-defective mutated derivatives of carboxypeptidase yscY (DeltassCPY* and DeltassCPY*-GFP) and also examined the requirements for degradation of the corresponding wild-type enzyme made ER-import incompetent by removal of its signal sequence (DeltassCPY). All these protein species are rapidly degraded via the ubiquitin-proteasome system. Degradation requires the ubiquitin-conjugating enzymes Ubc4p and Ubc5p, the cytoplasmic Hsp70 Ssa chaperone machinery, and the Hsp70 cochaperone Ydj1p. Neither the Hsp90 chaperones nor Hsp104 or the small heat-shock proteins Hsp26 and Hsp42 are involved in the degradation process. Elimination of a GFP fusion (GFP-cODC), containing the C-terminal 37 amino acids of ornithine decarboxylase (cODC) directing this enzyme to the proteasome, is independent of Ssa1p function. Fusion of DeltassCPY* to GFP-cODC to form DeltassCPY*-GFP-cODC reimposes a dependency on the Ssa1p chaperone for degradation. Evidently, the misfolded protein domain dictates the route of protein elimination. These data and our further results give evidence that the Ssa1p-Ydj1p machinery recognizes misfolded protein domains, keeps misfolded proteins soluble, solubilizes precipitated protein material, and escorts and delivers misfolded proteins in the ubiquitinated state to the proteasome for degradation.


Assuntos
Carboxipeptidases/química , Carboxipeptidases/metabolismo , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Catepsina A , Proteínas de Choque Térmico HSP40/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Ubiquitina/metabolismo
4.
FEBS Lett ; 577(3): 422-6, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15556621

RESUMO

We undertook a growth-based screen exploiting the degradation of CTL*, a chimeric membrane-bound ERAD substrate derived from soluble lumenal CPY*. We screened the Saccharomyces cerevisiae genomic deletion library containing approximately 5000 viable strains for mutants defective in endoplasmic reticulum (ER) protein quality control and degradation (ERAD). Among the new gene products we identified Yos9p, an ER-localized protein previously involved in the processing of GPI anchored proteins. We show that deficiency in Yos9p affects the degradation only of glycosylated ERAD substrates. Degradation of non-glycosylated substrates is not affected in cells lacking Yos9p. We propose that Yos9p is a lectin or lectin-like protein involved in the quality control of N-glycosylated proteins. It may act sequentially or in concert with the ERAD lectin Htm1p/Mnl1p (EDEM) to prevent secretion of malfolded glycosylated proteins and deliver them to the cytosolic ubiquitin-proteasome machinery for elimination.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Deleção de Genes , Teste de Complementação Genética , Glicoproteínas/genética , Cinética , Metionina/metabolismo , Modelos Biológicos , Plasmídeos/metabolismo , Testes de Precipitina , Estrutura Terciária de Proteína , Controle de Qualidade , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Radioisótopos de Enxofre , Temperatura
6.
J Cell Sci ; 122(Pt 9): 1374-81, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19366730

RESUMO

Cue1p is an N-terminally anchored endoplasmic reticulum (ER) protein essential for the activity of the two major yeast RING finger ubiquitin ligases (E3s) implicated in ER-associated degradation (ERAD). Cue1p contains a CUE domain, which for several proteins is known to bind ubiquitin. We now establish that the CUE domain is dispensable for ERAD of substrates of both Hrd1p and Doa10p and that the Cue1p transmembrane domain is similarly not required for degradation of the Hrd1p substrate CPY. Cue1p interacts with the ERAD E2 Ubc7p in vivo. We show that a discrete C-terminal Ubc7p binding region (U7BR) of Cue1p is required for ERAD and for Ubc7p-dependent ubiquitylation by Hrd1p in vitro. Strikingly, when Ubc7p is stabilized by direct anchoring to the ER membrane, the U7BR is sufficient to restore ERAD in cells lacking Cue1p. Thus, discrete E2 binding sites independent of ubiquitin ligase domains have the potential to activate ubiquitylation.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Proteínas de Transporte/genética , Retículo Endoplasmático/ultraestrutura , Proteínas de Membrana/genética , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Semin Cell Dev Biol ; 18(6): 770-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17950636

RESUMO

Endoplasmic reticulum-associated degradation (ERAD) represents the primary means of quality control within the secretory pathway. Critical to this process are ubiquitin protein ligases (E3s) which, together with ubiquitin conjugating enzymes (E2s), mediate the ubiquitylation of proteins targeted for degradation from the ER. In this chapter we review our knowledge of both Saccharomyces cerevisiae and mammalian ERAD ubiquitin ligases. We focus on recent insights into these E3s, their associated proteins and potential mechanisms of action.


Assuntos
Retículo Endoplasmático/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Mamíferos , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Ubiquitinação
8.
Nat Med ; 13(12): 1504-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18037895

RESUMO

Metastasis is the primary cause of mortality from cancer, but the mechanisms leading to metastasis are poorly understood. In particular, relatively little is known about metastasis in cancers of mesenchymal origins, which are known as sarcomas. Approximately ten proteins have been characterized as 'metastasis suppressors', but how these proteins function and are regulated is, in general, not well understood. Gp78 (also known as AMFR or RNF45) is a RING finger E3 ubiquitin ligase that is integral to the endoplasmic reticulum (ER) and involved in ER-associated degradation (ERAD) of diverse substrates. Here we report that expression of gp78 has a causal role in the metastasis of an aggressive human sarcoma and that this prometastatic activity requires the E3 activity of gp78. Further, gp78 associates with and targets the transmembrane metastasis suppressor, KAI1 (also known as CD82), for degradation. Suppression of gp78 increases KAI1 abundance and reduces the metastatic potential of tumor cells, an effect that is largely blocked by concomitant suppression of KAI1. An inverse relationship between these proteins was confirmed in a human sarcoma tissue microarray. Whereas most previous efforts have focused on genetic mechanisms for the loss of metastasis suppressor genes, our results provide new evidence for post-translational downregulation of a metastasis suppressor by its ubiquitin ligase, resulting in abrogation of its metastasis-suppressing effects.


Assuntos
Proteína Kangai-1/metabolismo , Proteínas/química , Receptores de Citocinas/fisiologia , Sarcoma/patologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Humanos , Mesoderma/metabolismo , Camundongos , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Domínios RING Finger , Receptores do Fator Autócrino de Motilidade , Receptores de Citocinas/genética , Transfecção , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
J Cell Sci ; 118(Pt 7): 1485-92, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15769847

RESUMO

In the endoplasmic reticulum (ER), N-linked glycans (N-glycans) function as signals to recruit the lectin chaperones involved in protein folding, quality control and ER-associated degradation. We undertook a systematic study of the four N-glycans of mutated carboxypeptidase yscY (CPY*) to determine whether there are positional differences between the glycans in ER-associated degradation. We constructed hypoglycosylated CPY* variants containing one, two or three N-glycans in various combinations and studied their degradation kinetics. We found that the four carbohydrate chains on CPY* are not equal in their signaling function: presence of the Asn368-linked glycan is necessary and sufficient for efficient degradation of CPY*. We also analysed the involvement of the ER lectins Htm1p and Cne1p (yeast calnexin) in the glycan-based recognition process with respect to number and position of N-glycans. We observed that Htm1p function depends on the presence of N-glycans in general but that there is no positional preference for a particular glycan. Cne1p, however, is selective with respect to substrate, and participates in the quality control only of some underglycosylated variants. For cases in which both lectins are involved, Cne1p and Htm1p play competing roles in targeting the substrate for degradation: loss of Cne1p accelerates degradation, whereas loss of Htm1p stabilizes the substrate.


Assuntos
Carboidratos/química , Carboxipeptidases/química , Carboxipeptidases/genética , Retículo Endoplasmático/metabolismo , Sequência de Aminoácidos , Calnexina , Metabolismo dos Carboidratos , Carboidratos/genética , Carboxipeptidases/metabolismo , Glicosilação , Cinética , Lectinas/metabolismo , Manosidases/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Polissacarídeos/química , Polissacarídeos/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Fatores de Tempo
10.
EMBO J ; 22(10): 2309-17, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12743025

RESUMO

The surveillance of the structural fidelity of the proteome is of utmost importance to all cells. The endoplasmic reticulum (ER) is the organelle responsible for proper folding and delivery of proteins to the secretory pathway. It contains a sophisticated protein proofreading and elimination mechanism. Failure of this machinery leads to disease and, finally, to cell death. Elimination of misfolded proteins requires retrograde transport across the ER membrane and depends on the central cytoplasmic proteolytic machinery involved in cellular regulation: the ubiquitin-proteasome system. The basics of this process as well as recent advances in the field are reviewed.


Assuntos
Retículo Endoplasmático/metabolismo , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma , Dobramento de Proteína , Ubiquitina/metabolismo , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Transporte Proteico/fisiologia
11.
EMBO Rep ; 5(7): 692-7, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15167887

RESUMO

We developed a growth test to screen for yeast mutants defective in endoplasmic reticulum (ER) quality control and associated protein degradation (ERAD) using the membrane protein CTL*, a chimeric derivative of the classical ER degradation substrate CPY*. In a genomic screen of approximately 5,000 viable yeast deletion mutants, we identified genes necessary for ER quality control and degradation. Among the new gene products, we identified Dsk2p and Rad23p. We show that these two proteins are probably delivery factors for ubiquitinated ER substrates to the proteasome, following their removal from the membrane via the Cdc48-Ufd1-Npl4p complex. In contrast to the ERAD substrate CTG*, proteasomal degradation of a cytosolic CPY*-GFP fusion is not dependent on Dsk2p and Rad23p, indicating pathway specificity for both proteins. We propose that, in certain degradation pathways, Dsk2p, Rad23p and the trimeric Cdc48 complex function together in the delivery of ubiquitinated proteins to the proteasome, avoiding malfolded protein aggregates in the cytoplasm.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Retículo Endoplasmático/metabolismo , Técnicas Genéticas , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Ubiquitinas/genética , Ubiquitinas/fisiologia , Adenosina Trifosfatases , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Cicloeximida/farmacologia , Citoplasma/metabolismo , Citosol/metabolismo , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Modelos Químicos , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Fases de Leitura Aberta , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Inibidores da Síntese de Proteínas/farmacologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Ubiquitina/metabolismo , Proteína com Valosina , Proteínas de Transporte Vesicular
12.
Eur J Biochem ; 270(22): 4507-14, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14622279

RESUMO

Saccharomyces cerevisiae Gpi3p is the UDP-GlcNAc-binding and presumed catalytic subunit of the enzyme that forms GlcNAc-phosphatidylinositol in glycosylphosphatidylinositol biosynthesis. It is an essential protein with an EX7E motif that is conserved in four families of retaining glycosyltransferases. All Gpi3ps contain a cysteine residue four residues C-terminal to EX7E. To test their importance for Gpi3p function in vivo, Glu289 and 297 in the EX7E motif of S. cerevisiae Gpi3p, as well as Cys301, were altered by site-specific mutagenesis, and the mutant proteins tested for their ability to complement nonviable GPI3-deleted haploids. Gpi3p-C301A supported growth but membranes from C301A-expressing cells had low in vitro N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) synthetic activity. Haploids harboring Gpi3p-E289A proved viable, although slow growing but Gpi3-E297A did not support growth. The E289D and E297D mutants both supported growth at 25 degrees C, but, whereas the E289D strain grew at 37 degrees C, the E297D mutant did not. Membranes from E289D mutants had severely reduced in vitro GlcNAc-PI synthetic activity and E297D membranes had none. The mutation of the first Glu in the EX7E motif of Schizosaccharomyces pombe Gpi3p (Glu277) to Asp complemented the lethal null mutation in gpi3+ and supported growth at 37 degrees C, but the E285D mutant was nonviable. Our results suggest that the second Glu residue of the EX7E motif in Gpi3p is of greater importance than the first for function in vivo. Further, our findings do not support previous suggestions that the first Glu of an EX7E protein is the nucleophile and that Cys301 has an important role in UDP-GlcNAc binding by Gpi3ps.


Assuntos
Ácido Glutâmico/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Glicosiltransferases/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/enzimologia , Transativadores/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Divisão Celular , Glicosiltransferases/genética , Mutagênese Sítio-Dirigida , Mutação , Subunidades Proteicas/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Relação Estrutura-Atividade , Transativadores/genética
13.
J Biol Chem ; 278(38): 35903-13, 2003 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12847107

RESUMO

The endoplasmic reticulum (ER) harbors a protein quality control system, which monitors protein folding in the ER. Elimination of malfolded proteins is an important function of this protein quality control. Earlier studies with various soluble and transmembrane ER-associated degradation (ERAD) substrates revealed differences in the ER degradation machinery used. To unravel the nature of these differences we generated two type I membrane ERAD substrates carrying malfolded carboxypeptidase yscY (CPY*) as the ER-luminal ERAD recognition motif. Whereas the first, CT* (CPY*-TM), has no cytoplasmic domain, the second, CTG*, has the green fluorescent protein present in the cytosol. Together with CPY*, these three substrates represent topologically diverse malfolded proteins, degraded via ERAD. Our data show that degradation of all three proteins is dependent on the ubiquitin-proteasome system involving the ubiquitin-protein ligase complex Der3/Hrd1p-Hrd3p, the ubiquitin conjugating enzymes Ubc1p and Ubc7p, as well as the AAA-ATPase complex Cdc48-Ufd1-Npl4 and the 26S proteasome. In contrast to soluble CPY*, degradation of the membrane proteins CT* and CTG* does not require the ER proteins Kar2p (BiP) and Der1p. Instead, CTG* degradation requires cytosolic Hsp70, Hsp40, and Hsp104p chaperones.


Assuntos
Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Divisão Celular , Membrana Celular/metabolismo , Cicloeximida/farmacologia , Citoplasma/metabolismo , Citosol/metabolismo , Escherichia coli/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Plasmídeos/metabolismo , Mutação Puntual , Testes de Precipitina , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Inibidores da Síntese de Proteínas/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA