Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 190(10): 3467-74, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18344363

RESUMO

In this study, we cloned and sequenced a virulence-associated gene (vacB) from a clinical isolate SSU of Aeromonas hydrophila. We identified this gene based on our recently annotated genome sequence of the environmental isolate ATCC 7966(T) of A. hydrophila and the vacB gene of Shigella flexneri. The A. hydrophila VacB protein contained 798 amino acid residues, had a molecular mass of 90.5 kDa, and exhibited an exoribonuclease (RNase R) activity. The RNase R of A. hydrophila was a cold-shock protein and was required for bacterial growth at low temperature. The vacB isogenic mutant, which we developed by homologous recombination using marker exchange mutagenesis, was unable to grow at 4 degrees C. In contrast, the wild-type (WT) A. hydrophila exhibited significant growth at this low temperature. Importantly, the vacB mutant was not defective in growth at 37 degrees C. The vacB mutant also exhibited reduced motility, and these growth and motility phenotype defects were restored after complementation of the vacB mutant. The A. hydrophila RNase R-lacking strain was found to be less virulent in a mouse lethality model (70% survival) when given by the intraperitoneal route at as two 50% lethal doses (LD(50)). On the other hand, the WT and complemented strains of A. hydrophila caused 80 to 90% of the mice to succumb to infection at the same LD(50) dose. Overall, this is the first report demonstrating the role of RNase R in modulating the expression of A. hydrophila virulence.


Assuntos
Aeromonas hydrophila/patogenicidade , Temperatura Baixa , Exorribonucleases/fisiologia , Virulência/genética , Aeromonas hydrophila/enzimologia , Aeromonas hydrophila/isolamento & purificação , Sequência de Aminoácidos , Animais , Exorribonucleases/genética , Regulação Bacteriana da Expressão Gênica/genética , Macrófagos/microbiologia , Dados de Sequência Molecular
2.
Gene ; 498(2): 280-7, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22391092

RESUMO

Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila. Importantly, there are multiple GATC binding sites for Dam within an upstream sequence of the gidA gene and one such target site in the act gene upstream region. We showed the dam gene to be essential for the viability of A. hydrophila SSU, and, therefore, to better understand the interaction of the encoding genes, Dam and GidA, in act gene regulation, we constructed a gidA in-frame deletion mutant of Escherichia coli GM28 (dam(+)) and GM33 (∆dam) strains. We then tested the expressional activity of the act and gidA genes by using a promoterless pGlow-TOPO vector containing a reporter green fluorescent protein (GFP). Our data indicated that in GidA(+) strains of E. coli, constitutive methylation of the GATC site(s) by Dam negatively regulated act and gidA gene expression as measured by GFP production. However, in the ∆gidA strains, irrespective of the presence or absence of constitutively active Dam, we did not observe any alteration in the expression of the act gene signifying the role of GidA in positively regulating Act production. To determine the exact mechanism of how Dam and GidA influence Act, a real-time quantitative PCR (RT-qPCR) assay was performed. The analysis indicated an increase in gidA and act gene expression in the A. hydrophila Dam-overproducing strain, and these data matched with Act production in the E. coli GM28 strain. Thus, the extent of DNA methylation caused by constitutive versus overproduction of Dam, as well as possible conformation of DNA influence the expression of act and gidA genes in A. hydrophila SSU. Our results indicate that the act gene is under the control of both Dam and GidA modification methylases, and Dam regulates Act production via GidA.


Assuntos
Aeromonas hydrophila/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterotoxinas/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Aeromonas hydrophila/patogenicidade , Animais , Sequência de Bases , Metilação de DNA , Enterotoxinas/metabolismo , Eritrócitos/microbiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Mutação , RNA de Transferência/metabolismo , Coelhos , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética
3.
Open Microbiol J ; 3: 92-6, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19587798

RESUMO

Granulysin is a cationic protein produced by human T cells and natural killer cells that can kill bacterial pathogens through disruption of microbial membrane integrity. Herein we demonstrate antimicrobial activity of the granulysin peptide derived from the active site against Bacillus anthracis, Yersinia pestis, Francisella tularensis, and Burkholderia mallei, and show pathogen-specific differences in granulysin peptide effects. The susceptibility of Y. pestis to granulysin is temperature dependent, being less susceptible when grown at the flea arthropod vector temperature (26°C) than when grown at human body temperature. These studies suggest that augmentation of granulysin expression by cytotoxic lymphocytes, or therapeutic application of granulysin peptides, could constitute important strategies for protection against select agent bacterial pathogens. Investigations of the microbial surface molecules that determine susceptibility to granulysin may identify important mechanisms that contribute to pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA