Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell Mol Biol Lett ; 25: 41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32874188

RESUMO

BACKGROUND: The links between the p53/MDM2 pathway and the expression of pro-oncogenic immune inhibitory receptors in tumor cells are undefined. In this report, we evaluate whether there is p53 and/or MDM2 dependence in the expression of two key immune receptors, CD276 and PD-L1. METHODS: Proximity ligation assays were used to quantify protein-protein interactions in situ in response to Nutlin-3. A panel of p53-null melanoma cells was created using CRISPR-Cas9 guide RNA mediated genetic ablation. Flow cytometric analyses were used to assess the impact of TP53 or ATG5 gene ablation, as well as the effects of Nutlin-3 and an ATM inhibitor on cell surface PD-L1 and CD276. Targeted siRNA was used to deplete CD276 to assess changes in cell cycle parameters by flow cytometry. A T-cell proliferation assay was used to assess activity of CD4+ T-cells as a function of ATG5 genotype. RESULTS: CD276 forms protein-protein interactions with MDM2 in response to Nutlin-3, similar to the known MDM2 interactors p53 and HSP70. Isogenic HCT116 p53-wt/null cancer cells demonstrated that CD276 is induced on the cell surface by Nutlin-3 in a p53-dependent manner. PD-L1 was also unexpectedly induced by Nutlin-3, but PD-L1 does not bind MDM2. The ATM inhibitor KU55993 reduced the levels of PD-L1 under conditions where Nutlin-3 induces PD-L1, indicating that MDM2 and ATM have opposing effects on PD-L1 steady-state levels. PD-L1 is also up-regulated in response to genetic ablation of TP53 in A375 melanoma cell clones under conditions in which CD276 remains unaffected. A549 cells with a deletion in the ATG5 gene up-regulated only PD-L1, further indicating that PD-L1 and CD276 are under distinct genetic control. CONCLUSION: Genetic inactivation of TP53, or the use of the MDM2 ligand Nutlin-3, alters the expression of the immune blockade receptors PD-L1 and CD276. The biological function of elevated CD276 is to promote altered cell cycle progression in response to Nutlin-3, whilst the major effect of elevated PD-L1 is T-cell suppression. These data indicate that TP53 gene status, ATM and MDM2 influence PD-L1 and CD276 paralogs on the cell surface. These data have implications for the use of drugs that target the p53 pathway as modifiers of immune checkpoint receptor expression.


Assuntos
Antígenos B7/genética , Antígeno B7-H1/genética , Imidazóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Células A549 , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células HCT116 , Humanos , Ligantes , Melanoma/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
2.
Nanomedicine ; 11(3): 731-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25546848

RESUMO

Toxicity of silver nanoparticles (AgNPs) is supported by many observations in literature, but no mechanism details have been proved yet. Here we confirm and quantify the toxic potential of fully characterized AgNPs in HeLa and A549 cells. Notably, through a specific fluorescent probe, we demonstrate the intracellular release of Ag(+) ions in living cells after nanoparticle internalization, showing that in-situ particle degradation is promoted by the acidic lysosomal environment. The activation of metallothioneins in response to AgNPs and the possibility to reverse the main toxic pathway by Ag(+) chelating agents demonstrate a cause/effect relationship between ions and cell death. We propose that endocytosed AgNPs are degraded in the lysosomes and the release of Ag(+) ions in the cytosol induces cell damages, while ions released in the cell culture medium play a negligible effect. These findings will be useful to develop safer-by-design nanoparticles and proper regulatory guidelines of AgNPs. From the clinical editor: The authors describe the toxic potential of silver nanoparticles (AgNP) in human cancer cell lines. Cell death following the application of AgNPs is dose-dependent, and it is mostly due to Ag+ ions. Further in vivo studies should be performed to gain a comprehensive picture of AgNP-toxicity in mammals.


Assuntos
Citosol/metabolismo , Nanopartículas Metálicas/química , Prata , Cátions Monovalentes/farmacocinética , Células HeLa , Humanos , Lisossomos/metabolismo , Prata/química , Prata/farmacocinética , Prata/farmacologia
3.
Vaccines (Basel) ; 12(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543856

RESUMO

The World Health Organization reports that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted a staggering 770 million individuals to date. Despite the widespread nature of this viral infection, its precise effects remain largely elusive. This scientific inquiry aims to shed light on the intricate interplay between SARS-CoV-2 infection and the development of neurodegenerative disorders-an affliction that weighs heavily on millions worldwide and stands as the fourth most prevalent cause of mortality. By comprehensively understanding the repercussions of SARS-CoV-2 on neurodegenerative disorders, we strive to unravel critical insights that can potentially shape our approach to the diagnosis, prevention, and treatment of these debilitating conditions. To achieve this goal, we conducted a comprehensive literature review of the scientific data available to date showing that SARS-CoV-2 infection is associated with increased risk and severity of neurodegenerative disorders, as well as altered expression of key genes and pathways involved in their pathogenesis.

4.
Commun Biol ; 7(1): 708, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851810

RESUMO

Robotically assisted proteomics provides insights into the regulation of multiple proteins achieving excellent spatial resolution. However, developing an effective method for spatially resolved quantitative proteomics of formalin fixed paraffin embedded tissue (FFPE) in an accessible and economical manner remains challenging. We introduce non-robotic In-insert FFPE proteomics approach, combining glass insert FFPE tissue processing with spatial quantitative data-independent mass spectrometry (DIA). In-insert approach identifies 450 proteins from a 5 µm thick breast FFPE tissue voxel with 50 µm lateral dimensions covering several tens of cells. Furthermore, In-insert approach associated a keratin series and moesin (MOES) with prolactin-induced protein (PIP) indicating their prolactin and/or estrogen regulation. Our data suggest that PIP is a spatial biomarker for hormonally triggered cytoskeletal remodeling, potentially useful for screening hormonally affected hotspots in breast tissue. In-insert proteomics represents an alternative FFPE processing method, requiring minimal laboratory equipment and skills to generate spatial proteotype repositories from FFPE tissue.


Assuntos
Biomarcadores , Citoesqueleto , Inclusão em Parafina , Proteômica , Feminino , Humanos , Biomarcadores/metabolismo , Citoesqueleto/metabolismo , Formaldeído/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana Transportadoras , Proteínas dos Microfilamentos/metabolismo , Inclusão em Parafina/métodos , Prolactina/metabolismo , Proteômica/métodos , Fixação de Tecidos/métodos
5.
Talanta ; 278: 126460, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968660

RESUMO

The detection of HPV infection and microbial colonization in cervical lesions is currently done through PCR-based viral or bacterial DNA amplification. Our objective was to develop a methodology to expand the metaproteomic landscape of cervical disease and determine if protein biomarkers from both human and microbes could be detected in distinct cervical samples. This would lead to the development of multi-species proteomics, which includes protein-based lateral flow diagnostics that can define patterns of microbes and/or human proteins relevant to disease status. In this study, we collected both non-frozen tissue biopsy and exfoliative non-fixed cytology samples to assess the consistency of detecting human proteomic signatures between the cytology and biopsy samples. Our results show that proteomics using biopsies or cytologies can detect both human and microbial organisms. Across patients, Lumican and Galectin-1 were most highly expressed human proteins in the tissue biopsy, whilst IL-36 and IL-1RA were most highly expressed human proteins in the cytology. We also used mass spectrometry to assess microbial proteomes known to reside based on prior 16S rRNA gene signatures. Lactobacillus spp. was the most highly expressed proteome in patient samples and specific abundant Lactobacillus proteins were identified. These methodological approaches can be used in future metaproteomic clinical studies to interrogate the vaginal human and microbiome structure and metabolic diversity in cytologies or biopsies from the same patients who have pre-invasive cervical intraepithelial neoplasia, invasive cervical cancer, as well as in healthy controls to assess how human and pathogenic proteins may correlate with disease presence and severity.


Assuntos
Biomarcadores , Colo do Útero , Proteômica , Humanos , Feminino , Proteômica/métodos , Colo do Útero/microbiologia , Colo do Útero/patologia , Biópsia , Biomarcadores/análise , Biomarcadores/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/microbiologia , Lactobacillus , Galectina 1/metabolismo , Galectina 1/análise , Galectina 1/genética , Lumicana , Adulto , Microbiota
6.
Cancer Immunol Res ; 11(6): 747-762, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36961404

RESUMO

Tumor antigens can emerge through multiple mechanisms, including translation of noncoding genomic regions. This noncanonical category of tumor antigens has recently gained attention; however, our understanding of how they recur within and between cancer types is still in its infancy. Therefore, we developed a proteogenomic pipeline based on deep learning de novo mass spectrometry (MS) to enable the discovery of noncanonical MHC class I-associated peptides (ncMAP) from noncoding regions. Considering that the emergence of tumor antigens can also involve posttranslational modifications (PTM), we included an open search component in our pipeline. Leveraging the wealth of MS-based immunopeptidomics, we analyzed data from 26 MHC class I immunopeptidomic studies across 11 different cancer types. We validated the de novo identified ncMAPs, along with the most abundant PTMs, using spectral matching and controlled their FDR to 1%. The noncanonical presentation appeared to be 5 times enriched for the A03 HLA supertype, with a projected population coverage of 55%. The data reveal an atlas of 8,601 ncMAPs with varying levels of cancer selectivity and suggest 17 cancer-selective ncMAPs as attractive therapeutic targets according to a stringent cutoff. In summary, the combination of the open-source pipeline and the atlas of ncMAPs reported herein could facilitate the identification and screening of ncMAPs as targets for T-cell therapies or vaccine development.


Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Humanos , Antígenos de Histocompatibilidade Classe I/genética , Neoplasias/genética , Genômica , Antígenos de Neoplasias , Peptídeos
7.
J Proteome Res ; 11(2): 1391-6, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22181049

RESUMO

Albumin is one of the most abundant plasma proteins and is heavily glycated in diabetes. In this study, we have addressed whether variation in the albumin levels influence glycation of plasma proteins and HbA1c. The study was performed in three systems: (1) streptozotocin (STZ)-induced diabetic mice plasma, (2) diabetic clinical plasma, and (3) in vitro glycated plasma. Diabetic mice and clinical plasma samples were categorized as diabetic high albumin plasma (DHAP) and diabetic low albumin plasma (DLAP) on the basis of their albumin levels. For the in vitro experiment, two albumin levels, high albumin plasma (HAP) and low albumin plasma (LAP), were created by differential depletion of plasma albumin. Protein glycation was studied by using a combination of two-dimensional electrophoresis (2DE), Western blotting, and LC-MS(E). In both mice and clinical experiments, an increased plasma protein glycation was observed in DLAP than in DHAP. Additionally, plasma albumin levels were negatively correlated with HbA1c. The in vitro experiment with differential depletion of albumin mechanistically showed that the low albumin levels are associated with increased plasma protein glycation and that albumin competes for glycation with other plasma proteins.


Assuntos
Diabetes Mellitus/sangue , Hemoglobinas Glicadas/metabolismo , Glicoproteínas/sangue , Albumina Sérica/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , Análise por Conglomerados , Diabetes Mellitus Experimental/sangue , Eletroforese em Gel Bidimensional , Hemoglobinas Glicadas/química , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/metabolismo , Glicoproteínas/química , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Proteômica , Albumina Sérica/química
8.
Biochem Biophys Res Commun ; 419(3): 490-4, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22366088

RESUMO

Cancer is associated with increased glycolysis and carbonyl stress. In view of this, AGE modified proteins were identified from clinical breast cancer tissue using 2DE-immunoblot and mass-spectrometry. These proteins were identified to be serotransferrin, fibrinogen gamma chain, glycerol-3-phosphate dehydrogenase, lactate dehydrogenase, annexin II, prohibitin and peroxiredoxin 6, which have established role in cancer. Further, RAGE expression and its downstream signaling proteins NADPH oxidase and NF-kB were studied. Role of these AGE modified proteins and RAGE signaling in breast cancer is discussed.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Produtos Finais de Glicação Avançada/metabolismo , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas de Neoplasias/metabolismo , Receptor para Produtos Finais de Glicação Avançada/biossíntese , Sequência de Aminoácidos , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Feminino , Humanos , Dados de Sequência Molecular , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica , Processamento de Proteína Pós-Traducional , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo
9.
Anal Chim Acta ; 1204: 339695, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35397901

RESUMO

Developments in quantitative proteomics and data-independent acquisition (DIA) methodology is enabling quantification of proteins in biological samples. Currently, there are a few reports on DIA mass spectrometry (MS) approaches for proteome analysis of formalin-fixed paraffin-embedded (FFPE) tissues. Therefore, to facilitate detection and quantification of immune- and glioblastoma (GBM)-relevant proteins from FFPE patient materials, we established a simple and precise DIA-MS workflow. We first evaluated different lysis buffers for their efficiency in protein extractions from FFPE GBM tissues. Our results showed that more than 1700 proteins were detected and over 1400 proteins were quantified from GBM FFPE tissue microdissections. GBM-relevant proteins (e.g., GFAP, FN1, VIM, and MBP) were quantified with high precision (median coefficient of variation <12%). In addition, immune-related proteins (e.g., ILF2, MIF, and CD38) were consistently detected and quantified. The strategy holds great potential for routinizing protein quantification in FFPE tissue samples.


Assuntos
Glioblastoma , Proteoma , Formaldeído/química , Humanos , Inclusão em Parafina/métodos , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Fixação de Tecidos/métodos
10.
Biomolecules ; 12(8)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36008984

RESUMO

The IFITM restriction factors play a role in cancer cell progression through undefined mechanisms. We investigate new protein-protein interactions for IFITM1/3 in the context of cancer that would shed some light on how IFITM1/3 attenuate the expression of targeted proteins such as HLA-B. SBP-tagged IFITM1 protein was used to identify an association of IFITM1 protein with the SRSF1 splicing factor and transporter of mRNA to the ribosome. Using in situ proximity ligation assays, we confirmed a predominant cytosolic protein-protein association for SRSF1 and IFITM1/3. Accordingly, IFITM1/3 interacted with HLA-B mRNA in response to IFNγ stimulation using RNA-protein proximity ligation assays. In addition, RT-qPCR assays in IFITM1/IFITM3 null cells and wt-SiHa cells indicated that HLA-B gene expression at the mRNA level does not account for lowered HLA-B protein synthesis in response to IFNγ. Complementary, shotgun RNA sequencing did not show major transcript differences between IFITM1/IFITM3 null cells and wt-SiHa cells. Furthermore, ribosome profiling using sucrose gradient sedimentation identified a reduction in 80S ribosomal fraction an IFITM1/IFITM3 null cells compared to wild type. It was partially reverted by IFITM1/3 complementation. Our data link IFITM1/3 proteins to HLA-B mRNA and SRSF1 and, all together, our results begin to elucidate how IFITM1/3 catalyze the synthesis of target proteins. IFITMs are widely studied for their role in inhibiting viruses, and multiple studies have associated IFITMs with cancer progression. Our study has identified new proteins associated with IFITMs which support their role in mediating protein expression; a pivotal function that is highly relevant for viral infection and cancer progression. Our results suggest that IFITM1/3 affect the expression of targeted proteins; among them, we identified HLA-B. Changes in HLA-B expression could impact the presentation and recognition of oncogenic antigens on the cell surface by cytotoxic T cells and, ultimately, limit tumor cell eradication. In addition, the role of IFITMs in mediating protein abundance is relevant, as it has the potential for regulating the expression of viral and oncogenic proteins.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígenos HLA-B , Neoplasias do Colo do Útero , Feminino , Antígenos HLA-B/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fatores de Processamento de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Neoplasias do Colo do Útero/genética
11.
Sci Rep ; 12(1): 19422, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371414

RESUMO

The interferon signalling system elicits a robust cytokine response against a wide range of environmental pathogenic and internal pathological signals, leading to induction of a subset of interferon-induced proteins. We applied DSS (disuccinimidyl suberate) mediated cross-linking mass spectrometry (CLMS) to capture novel protein-protein interactions within the realm of interferon induced proteins. In addition to the expected interferon-induced proteins, we identified novel inter- and intra-molecular cross-linked adducts for the canonical interferon induced proteins, such as MX1, USP18, OAS3, and STAT1. We focused on orthogonal validation of a cohort of novel interferon-induced protein networks formed by the HLA-A protein (H2BFS-HLA-A-HMGA1) using co-immunoprecipitation assay, and further investigated them by molecular dynamics simulation. Conformational dynamics of the simulated protein complexes revealed several interaction sites that mirrored the interactions identified in the CLMS findings. Together, we showcase a proof-of-principle CLMS study to identify novel interferon-induced signaling complexes and anticipate broader use of CLMS to identify novel protein interaction dynamics within the tumour microenvironment.


Assuntos
Interferons , Proteínas , Humanos , Reagentes de Ligações Cruzadas/química , Proteínas/química , Espectrometria de Massas/métodos , Antígenos HLA-A , Antígenos HLA , Ubiquitina Tiolesterase
12.
Front Immunol ; 13: 793234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634292

RESUMO

Autoimmune disease results from the immune response against self-antigens, while cancer develops when the immune system does not respond to malignant cells. Thus, for years, autoimmunity and cancer have been considered as two separate fields of research that do not have a lot in common. However, the discovery of immune checkpoints and the development of anti-cancer drugs targeting PD-1 (programmed cell death receptor 1) and CTLA-4 (cytotoxic T lymphocyte antigen 4) pathways proved that studying autoimmune diseases can be extremely helpful in the development of novel anti-cancer drugs. Therefore, autoimmunity and cancer seem to be just two sides of the same coin. In the current review, we broadly discuss how various regulatory cell populations, effector molecules, genetic predisposition, and environmental factors contribute to the loss of self-tolerance in autoimmunity or tolerance induction to cancer. With the current paper, we also aim to convince the readers that the pathways involved in cancer and autoimmune disease development consist of similar molecular players working in opposite directions. Therefore, a deep understanding of the two sides of immune tolerance is crucial for the proper designing of novel and selective immunotherapies.


Assuntos
Antineoplásicos , Doenças Autoimunes , Neoplasias , Doenças Autoimunes/etiologia , Autoimunidade , Humanos , Imunoterapia , Neoplasias/terapia
13.
Biomolecules ; 11(5)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922087

RESUMO

Interferon (IFN)-related DNA damage resistant signature (IRDS) genes are a subgroup of interferon-stimulated genes (ISGs) found upregulated in different cancer types, which promotes resistance to DNA damaging chemotherapy and radiotherapy. Along with briefly discussing IFNs and signalling in this review, we highlighted how different IRDS genes are affected by viruses. On the contrary, different strategies adopted to suppress a set of IRDS genes (STAT1, IRF7, OAS family, and BST2) to induce (chemo- and radiotherapy) sensitivity were deliberated. Significant biological pathways that comprise these genes were classified, along with their frequently associated genes (IFIT1/3, IFITM1, IRF7, ISG15, MX1/2 and OAS1/3/L). Major upstream regulators from the IRDS genes were identified, and different IFN types regulating these genes were outlined. Functional interfaces of IRDS proteins with DNA/RNA/ATP/GTP/NADP biomolecules featured a well-defined pharmacophore model for STAT1/IRF7-dsDNA and OAS1/OAS3/IFIH1-dsRNA complexes, as well as for the genes binding to GDP or NADP+. The Lys amino acid was found commonly interacting with the ATP phosphate group from OAS1/EIF2AK2/IFIH1 genes. Considering the premise that targeting IRDS genes mediated resistance offers an efficient strategy to resensitize tumour cells and enhances the outcome of anti-cancer treatment, this review can add some novel insights to the field.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Dano ao DNA/fisiologia , Interferons/fisiologia , Linhagem Celular Tumoral , Dano ao DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Fator Regulador 7 de Interferon , Interferons/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , RNA de Cadeia Dupla , Proteínas de Ligação a RNA , Fator de Transcrição STAT1 , Transdução de Sinais , Ativação Transcricional
14.
Comput Struct Biotechnol J ; 19: 5072-5091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589184

RESUMO

The TAP1-TAP2 complex transports antigenic peptide substrates into the endoplasmic reticulum (ER). In ER, the peptides are further processed and loaded on the major histocompatibility class (MHC) I molecules by the peptide loading complex (PLC). The TAP transporters are linked with the PLC; a target for cancers and viral immune evasion. But the mechanisms whereby the cancer-derived mutations in TAP1-TAP2 or viral factors targeting the PLC, interfere peptide transport are only emerging. This study describes that transit of peptides through TAP can take place via two different channels (4 or 8 helices) depending on peptide length and sequence. Molecular dynamics and binding affinity predictions of peptide-transporters demonstrated that smaller peptides (8-10 mers; e.g. AAGIGILTV, SIINFEKL) can transport quickly through the transport tunnel compared to longer peptides (15-mer; e.g. ENPVVHFFKNIVTPR). In line with a regulated and selective peptide transport by TAPs, the immunopeptidome upon IFN-γ treatment in melanoma cells induced the shorter length (9-mer) peptide presentation over MHC-I that exhibit a relatively weak binding affinity with TAP. A conserved distance between N and C terminus residues of the studied peptides in the transport tunnel were reported. Furthermore, by adversely interacting with the TAP transport passage or affecting TAPNBD domains tilt movement, the viral proteins and cancer-derived mutations in TAP1-TAP2 may induce allosteric effects in TAP that block conformation of the tunnel (closed towards ER lumen). Interestingly, some cancer-associated mutations (e.g. TAP1R372Q and TAP2R373H) can specifically interfere with selective transport channels (i.e. for longer-peptides). These results provide a model for how viruses and cancer-associated mutations targeting TAP interfaces can affect MHC-I antigen presentation, and how the IFN-γ pathway alters MHC-I antigen presentation via the kinetics of peptide transport.

15.
Talanta ; 233: 122568, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215064

RESUMO

Proteomics of human tissues and isolated cellular subpopulations create new opportunities for therapy and monitoring of a patients' treatment in the clinic. Important considerations in such analysis include recovery of adequate amounts of protein for analysis and reproducibility in sample collection. In this study we compared several protocols for proteomic sample preparation: i) filter-aided sample preparation (FASP), ii) in-solution digestion (ISD) and iii) a pressure-assisted digestion (PCT) method. PCT method is known for already a decade [1], however it is not widely used in proteomic research. We assessed protocols for proteome profiling of isolated immune cell subsets and formalin-fixed paraffin embedded (FFPE) tissue samples. Our results show that the ISD method has very good efficiency of protein and peptide identification from the whole proteome, while the FASP method is particularly effective in identification of membrane proteins. Pressure-assisted digestion methods generally provide lower numbers of protein/peptide identifications, but have gained in popularity due to their shorter digestion time making them considerably faster than for ISD or FASP. Furthermore, PCT does not result in substantial sample loss when applied to samples of 50 000 cells. Analysis of FFPE tissues shows comparable results. ISD method similarly yields the highest number of identifications. Furthermore, proteins isolated from FFPE samples show a significant reduction of cleavages at lysine sites due to chemical modifications with formaldehyde-such as methylation (+14 Da) being among the most common. The data we present will be helpful for making decisions about the robust preparation of clinical samples for biomarker discovery and studies on pathomechanisms of various diseases.


Assuntos
Proteoma , Proteômica , Digestão , Formaldeído , Humanos , Inclusão em Parafina , Reprodutibilidade dos Testes
16.
Cancers (Basel) ; 12(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110973

RESUMO

Neoantigen-based immunotherapies promise to improve patient outcomes over the current standard of care. However, detecting these cancer-specific antigens is one of the significant challenges in the field of mass spectrometry. Even though the first sequencing of the immunopeptides was done decades ago, today there is still a diversity of the protocols used for neoantigen isolation from the cell surface. This heterogeneity makes it difficult to compare results between the laboratories and the studies. Isolation of the neoantigens from the cell surface is usually done by mild acid elution (MAE) or immunoprecipitation (IP) protocol. However, limited amounts of the neoantigens present on the cell surface impose a challenge and require instrumentation with enough sensitivity and accuracy for their detection. Detecting these neopeptides from small amounts of available patient tissue limits the scope of most of the studies to cell cultures. Here, we summarize protocols for the extraction and identification of the major histocompatibility complex (MHC) class I and II peptides. We aimed to evaluate existing methods in terms of the appropriateness of the isolation procedure, as well as instrumental parameters used for neoantigen detection. We also focus on the amount of the material used in the protocols as the critical factor to consider when analyzing neoantigens. Beyond experimental aspects, there are numerous readily available proteomics suits/tools applicable for neoantigen discovery; however, experimental validation is still necessary for neoantigen characterization.

17.
Biochim Biophys Acta Gen Subj ; 1864(12): 129722, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866596

RESUMO

BACKGROUND: The identification of mutated proteins in human cancer cells-termed proteogenomics, requires several technologically independent research methodologies including DNA variant identification, RNA sequencing, and mass spectrometry. Any one of these methodologies are not optimized for identifying potential mutated proteins and any one output fails to cover completely a specific landscape. METHODS: An isogenic melanoma cell with a p53-null genotype was created by CRISPR/CAS9 system to determine how p53 gene inactivation affects mutant proteome expression. A mutant peptide reference database was developed by comparing two distinct DNA and RNA variant detection platforms using these isogenic cells. Chemically fractionated tryptic peptides from lysates were processed using a TripleTOF 5600+ mass spectrometer and their spectra were identified against this mutant reference database. RESULTS: Approximately 190 mutated peptides were enriched in wt-p53 cells, 187 mutant peptides were enriched in p53-null cells, with an overlap of 147 mutated peptides. STRING analysis highlighted that the wt-p53 cell line was enriched for mutant protein pathways such as CDC5L and POLR1B, whilst the p53-null cell line was enriched for mutated proteins comprising EGF/YES, Ubiquitination, and RPL26/5 nodes. CONCLUSION: Our study produces a well annotated p53-dependent and p53-independent mutant proteome of a common melanoma cell line model. Coupled to the application of an integrated DNA and RNA variant detection platform (CLCbio) and software for identification of proteins (ProteinPilot), this pipeline can be used to detect high confident mutant proteins in cells. GENERAL SIGNIFICANCE: This pipeline forms a blueprint for identifying mutated proteins in diseased cell systems.


Assuntos
Inativação Gênica , Melanoma/genética , Proteoma/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Proteogenômica
18.
Cell Signal ; 60: 39-56, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30951861

RESUMO

Interferon-induced transmembrane proteins IFITM1 and IFITM3 (IFITM1/3) play a role in both RNA viral restriction and in human cancer progression. Using immunohistochemical staining of FFPE tissue, we identified subgroups of cervical cancer patients where IFITM1/3 protein expression is inversely related to metastasis. Guide RNA-CAS9 methods were used to develop an isogenic IFITM1/IFITM3 double null cervical cancer model in order to define dominant pathways triggered by presence or absence of IFITM1/3 signalling. A pulse SILAC methodology identified IRF1, HLA-B, and ISG15 as the most dominating IFNγ inducible proteins whose synthesis was attenuated in the IFITM1/IFITM3 double-null cells. Conversely, SWATH-IP mass spectrometry of ectopically expressed SBP-tagged IFITM1 identified ISG15 and HLA-B as dominant co-associated proteins. ISG15ylation was attenuated in IFNγ treated IFITM1/IFITM3 double-null cells. Proximity ligation assays indicated that HLA-B can interact with IFITM1/3 proteins in parental SiHa cells. Cell surface expression of HLA-B was attenuated in IFNγ treated IFITM1/IFITM3 double-null cells. SWATH-MS proteomic screens in cells treated with IFITM1-targeted siRNA cells resulted in the attenuation of an interferon regulated protein subpopulation including MHC Class I molecules as well as IFITM3, STAT1, B2M, and ISG15. These data have implications for the function of IFITM1/3 in mediating IFNγ stimulated protein synthesis including ISG15ylation and MHC Class I production in cancer cells. The data together suggest that pro-metastatic growth associated with IFITM1/3 negative cervical cancers relates to attenuated expression of MHC Class I molecules that would support tumor immune escape.


Assuntos
Antígenos de Diferenciação/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Ligação a RNA/fisiologia , Neoplasias do Colo do Útero/metabolismo , Linhagem Celular , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Biossíntese de Proteínas/fisiologia
19.
Toxicon ; 169: 1-4, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31352010

RESUMO

Solitary aculeate wasps are abundant and diverse hymenopteran insects that disable prey using venom. The venom may possess neuromodulation, immunomodulatory, metabolic-modulatory and antimicrobial functions. Venom analysis of transcriptomes and proteomes has been previously performed in social and parasitoid wasp species. We develop methodologies including mass spectrometry-based shotgun proteomics to analyse the protein constituents from venom sacs of the solitary aculeate wasp Cerceris rybyensis. The venom sac constituents of C. rybyensis are discussed with respect to other wasp species.


Assuntos
Venenos de Vespas/química , Vespas/química , Animais , Feminino , Proteômica , Espectrometria de Massas em Tandem
20.
Nanoscale ; 9(19): 6315-6326, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28275767

RESUMO

Worldwide efforts are currently trying to produce effective risk assessment models for orally ingested nanoparticles. These tests should provide quantitative information on the bioaccessibility and bioavailability of products of biotransformation, such as dissolved ionic species and/or aggregates. In vitro dissolution tests might be useful for nanoparticle risk assessment, because of their potential to quantitatively monitor the changes of specific properties (e.g., dissolution, agglomeration, etc.), which are critical factors linked to bioaccessibility/bioavailability. Unfortunately, the technological advancement of such tools is currently hampered by the complexity and evolving nature of nanoparticle properties that are strongly influenced by the environment and are often difficult to trace in a standardized manner. Hence, the test's success depends on its ability to quantify such properties using standardized experimental conditions to mimic reality as closely as possible. Here we applied an in vitro dissolution test to quantify the dissolution of silver nanoparticles under dynamic conditions, which likely occur in human digestion, providing a clear description of the bioaccessible ionic species (free and matrix bound ions or soluble silver organic or inorganic complexes) occurring during the different digestion phases. We demonstrated the test feasibility using a multi-technique approach and following pre-standardized operational procedures to allow for a comprehensive description of the process as a whole. Moreover, this can favour data reliability for benchmarking. Finally, we showed how the estimated values of the bioaccessible ionic species relate to absorption and excretion parameters, as measured in vivo. The outcomes presented in this work highlight the potential regulatory role of the dissolution test for orally ingested nanoparticles and, although preliminary, experimentally demonstrate the regulatory oriented "read-across" principle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA