Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(20): 203201, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26613437

RESUMO

In a combined experimental and theoretical effort, we demonstrate a novel type of dipolar system made of ultracold bosonic dipolar molecules with large magnetic dipole moments. Our dipolar molecules are formed in weakly bound Feshbach molecular states from a sample of strongly magnetic bosonic erbium atoms. We show that the ultracold magnetic molecules can carry very large dipole moments and we demonstrate how to create and characterize them, and how to change their orientation. Finally, we confirm that the relaxation rates of molecules in a quasi-two-dimensional geometry can be reduced by using the anisotropy of the dipole-dipole interaction and that this reduction follows a universal dipolar behavior.

2.
Phys Rev Lett ; 109(11): 115303, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005643

RESUMO

We have produced large samples of stable ultracold (88)Sr(2) molecules in the electronic ground state in an optical lattice. The fast, all-optical method of molecule creation involves a near-intercombination-line photoassociation pulse followed by spontaneous emission with a near-unity Franck-Condon factor. The detection uses excitation to a weakly bound electronically excited vibrational level corresponding to a very large dimer and yields a high-Q molecular vibronic resonance. This is the first of two steps needed to create deeply bound (88)Sr(2) for frequency metrology and ultracold chemistry.

3.
Phys Rev Lett ; 109(23): 230403, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368170

RESUMO

We report the measurement of the anisotropic ac polarizability of ultracold polar (40)K(87)Rb molecules in the ground and first rotationally excited states. Theoretical analysis of the polarizability agrees well with experimental findings. Although the polarizability can vary by more than 30%, a "magic" angle between the laser polarization and the quantization axis is found where the polarizability of the |N=0,m(N)=0> and the |N=1,m(N)=0> states match. At this angle, rotational decoherence due to the mismatch in trapping potentials is eliminated, and we observe a sharp increase in the coherence time. This paves the way for precise spectroscopic measurements and coherent manipulations of rotational states as a tool in the creation and probing of novel quantum many-body states of polar molecules.

4.
J Chem Phys ; 129(17): 174301, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19045341

RESUMO

We report a comparison between experimental and theoretical electronic transition dipole moment values for the (7)Li(2) A (1)Sigma(u) (+)-X (1)Sigma(g) (+) system. The experimental results are based on measuring the absolute magnitude of the transition dipole matrix elements from Autler-Townes splitting of rovibrational transitions for different R-centroid values. The ab initio theoretical calculations of the transition dipole moment for the (7)Li(2) A (1)Sigma(u) (+)-X (1)Sigma(g) (+) system were performed using two different quantum-mechanical models: an all-electron valence bond self-consistent-field method and a pseudopotential molecular orbital method. As expected for the smallest molecule with core electrons, the agreement between experiment and theory is very good.

5.
Nat Commun ; 8: 15897, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28722014

RESUMO

A fundamental question in the study of chemical reactions is how reactions proceed at a collision energy close to absolute zero. This question is no longer hypothetical: quantum degenerate gases of atoms and molecules can now be created at temperatures lower than a few tens of nanokelvin. Here we consider the benchmark ultracold reaction between, the most-celebrated ultracold molecule, KRb and K. We map out an accurate ab initio ground-state potential energy surface of the K2Rb complex in full dimensionality and report numerically-exact quantum-mechanical reaction dynamics. The distribution of rotationally resolved rates is shown to be Poissonian. An analysis of the hyperspherical adiabatic potential curves explains this statistical character revealing a chaotic distribution for the short-range collision complex that plays a key role in governing the reaction outcome.

6.
Phys Rev X ; 5(4)2015.
Artigo em Inglês | MEDLINE | ID: mdl-29876143

RESUMO

We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach-resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory-inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant nonzero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate.

7.
J Res Natl Inst Stand Technol ; 103(2): 205-207, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-28009357

RESUMO

The multiconfiguration valence-bond method (VB) is applied to diatomic molecules using the Hartree-Fock (HF) atomic basis set. The hyperfine constant, Fermi contact term, is computed as a function of the interatomic separation for the X2∏ ground state of 17OH and X1∑ ground state of 107AgH+ molecules. This study leads to a number of conclusions about the influence of correlation and polarization effects on the hyperfine structure of hydrogenic molecules. The calculated values of the Fermi contact term are found to agree within 1 % of the experimental values wherever available.

8.
J Res Natl Inst Stand Technol ; 103(2): 201-204, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-28009365

RESUMO

Molecular constants have been computed for the ground states 2∏ of 17OH and 1Σ of 107AgH+. The valence-bond method and advanced computational technique were used to perform all-electron ab initio calculation of molecular electronic structures. The basic idea behind the model is to introduce the molecular wave functions in terms of Hartree-Fock many-electron atomic determinants. Full configuration interaction (CI) with nonorthogonal basis leads to the accurate calculation of molecular constants such as dissociation energy, equilibrium bond distance, vibrational and rotational constants with an agreement to the experimental data within a few percent.

9.
Faraday Discuss ; 142: 351-9; discussion 429-61, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20151553

RESUMO

We report the creation and characterization of a near quantum-degenerate gas of polar 40K-87Rb molecules in their absolute rovibrational ground state. Starting from weakly bound heteronuclear KRb Feshbach molecules, we implement precise control of the molecular electronic, vibrational, and rotational degrees of freedom with phase-coherent laser fields. In particular, we coherently transfer these weakly bound molecules across a 125 THz frequency gap in a single step into the absolute rovibrational ground state of the electronic ground potential. Phase coherence between lasers involved in the transfer process is ensured by referencing the lasers to two single components of a phase-stabilized optical frequency comb. Using these methods, we prepare a dense gas of 4 x 10(4) polar molecules at a temperature below 400 nK. This fermionic molecular ensemble is close to quantum degeneracy and can be characterized by a degeneracy parameter of T/T(F) = 3. We have measured the molecular polarizability in an optical dipole trap where the trap lifetime gives clues to interesting decay mechanisms. Given the large measured dipole moment of the KRb molecules of 0.5 Debye, the study of quantum degenerate molecular gases interacting via strong dipolar interactions is now within experimental reach. PACS numbers: 37.10.Mn, 37.10.Pq.

10.
Phys Rev Lett ; 100(4): 043201, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18352267

RESUMO

We propose a precision measurement of time variations of the proton-electron mass ratio using ultracold molecules in an optical lattice. Vibrational energy intervals are sensitive to changes of the mass ratio. In contrast to measurements that use hyperfine-interval-based atomic clocks, the scheme discussed here is model independent and does not require separation of time variations of different physical constants. The possibility of applying the zero-differential-Stark-shift optical lattice technique is explored to measure vibrational transitions at high accuracy.

11.
Phys Rev Lett ; 100(4): 043202, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18352268

RESUMO

We propose new experiments with high sensitivity to a possible variation of the electron-to-proton mass ratio mu identical with m(e)/m(p). We consider a nearly degenerate pair of molecular vibrational levels, each associated with a different electronic potential. With respect to a change in mu, the change in the splitting between such levels can be large both on an absolute scale and relative to the splitting. We demonstrate the existence of such pairs of states in Cs2, where the narrow spectral lines achievable with ultracold molecules make the system promising for future searches for small variations in mu.

12.
Phys Rev Lett ; 100(20): 203201, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18518530

RESUMO

Ultracold RbCs molecules in high-lying vibrational levels of the a3Sigma+ ground electronic state are confined in an optical trap. Inelastic collision rates of these molecules with both Rb and Cs atoms are determined for individual vibrational levels, across an order of magnitude of binding energies. The long-range dispersion coefficients for the collision process are calculated and used in a model that accurately reproduce the observed scattering rates.

13.
Science ; 322(5899): 231-5, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18801969

RESUMO

A quantum gas of ultracold polar molecules, with long-range and anisotropic interactions, not only would enable explorations of a large class of many-body physics phenomena but also could be used for quantum information processing. We report on the creation of an ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules. Using a single step of STIRAP (stimulated Raman adiabatic passage) with two-frequency laser irradiation, we coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential. The polar molecular gas has a peak density of 10(12) per cubic centimeter and an expansion-determined translational temperature of 350 nanokelvin. The polar molecules have a permanent electric dipole moment, which we measure with Stark spectroscopy to be 0.052(2) Debye (1 Debye = 3.336 x 10(-30) coulomb-meters) for the triplet rovibrational ground state and 0.566(17) Debye for the singlet rovibrational ground state.

14.
J Chem Phys ; 127(4): 044301, 2007 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-17672684

RESUMO

The lowest electronically excited states of Na2 are of interest as intermediaries in the excitation of higher states and in the development of methods for producing cold molecules. We have compiled previously obtained spectroscopic data on the A 1Sigmau+ and b 3Piu states of Na2 from about 20 sources, both published and unpublished, together with new sub-Doppler linewidth measurements of about 15,000 A<--X transitions using polarization spectroscopy. We also present new ab initio results for the diagonal and off-diagonal spin-orbit functions. The discrete variable representation is used in conjunction with Hund's case a potentials plus spin-orbit effects to model data extending from v=0 to very close to the 3 2S+3 2P12 limit. Empirical estimates of the spin-orbit functions agree well with the ab initio functions for the accessible values of R. The potential function for the A state includes an exchange potential for S+P atoms, with a fitted coefficient somewhat larger than the predicted value. Observed and calculated term values are presented in an auxiliary (EPAPS) file as a database for future studies on Na2.

15.
J Chem Phys ; 124(8): 084308, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16512717

RESUMO

We present a fundamentally new approach for measuring the transition dipole moment of molecular transitions, which combines the benefits of quantum interference effects, such as the Autler-Townes splitting, with the familiar R-centroid approximation. This method is superior to other experimental methods for determining the absolute value of the R-dependent electronic transition dipole moment function mu(e)(R), since it requires only an accurate measurement of the coupling laser electric field amplitude and the determination of the Rabi frequency from an Autler-Townes split fluorescence spectral line. We illustrate this method by measuring the transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) rovibronic transition and compare our experimental results with our ab initio calculations. We have compared the three-level (cascade) and four-level (extended Lambda) excitation schemes and found that the latter is preferable in this case for two reasons. First, this excitation scheme takes advantage of the fact that the coupling field lower level is outside the thermal population range. As a result vibrational levels with larger wave function amplitudes at the outer turning point of vibration lead to larger transition dipole moment matrix elements and Rabi frequencies than those accessible from the equilibrium internuclear distance of the thermal population distribution. Second, the coupling laser can be "tuned" to different rovibronic transitions in order to determine the internuclear distance dependence of the electronic transition dipole moment function in the region of the R-centroid of each coupling laser transition. Thus the internuclear distance dependence of the transition moment function mu(e)(R) can be determined at several very different values of the R centroid. The measured transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) transition is 5.5+/-0.2 D compared to our ab initio value of 5.9 D. By using the R-centroid approximation for this transition the corresponding experimental electronic transition dipole moment is 9.72 D at Rc = 4.81 A, in good agreement with our ab initio value of 10.55 D.

16.
J Chem Phys ; 123(17): 174304, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16375525

RESUMO

We apply the relativistic configuration-interaction valence-bond method to calculate various characteristics of the alkali-metal RbCs dimer. These include the electronic potentials and transition dipole moments between the ground and first excited states and permanent dipole moments of the X 1sigma+ and a 3sigma+ states of the ground configuration. In addition, we estimate the lifetime of the rovibrational levels of the X state due to blackbody radiation. These data can help experimentalists to optimize photoassociative formation of ultracold RbCs molecules and their longevity in a trap or in an optical lattice. Extended basis sets, constructed from Dirac-Fock and Sturm's orbitals, have been used to ensure convergence of our calculations. We compare our data with other theoretical and experimental results when they were available.

17.
Phys Rev Lett ; 90(11): 110401, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12688917

RESUMO

We show that, by loading a Bose-Einstein condensate of two different atomic species into an optical lattice, it is possible to achieve a Mott-insulator phase with exactly one atom of each species per lattice site. A subsequent photoassociation leads to the formation of one heteronuclear molecule with a large electric dipole moment, at each lattice site. The melting of such a dipolar Mott insulator creates a dipolar superfluid, and eventually a dipolar molecular condensate.

18.
Phys Rev A ; 52(2): 1411-1418, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9912379
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA