Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Nutr ; 9: 948264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958252

RESUMO

Tachysterol2 (T2) is a photoisomer of the previtamin D2 found in UV-B-irradiated foods such as mushrooms or baker's yeast. Due to its structural similarity to vitamin D, we hypothesized that T2 can affect vitamin D metabolism and in turn, fibroblast growth factor 23 (FGF23), a bone-derived phosphaturic hormone that is transcriptionally regulated by the vitamin D receptor (VDR). Initially, a mouse study was conducted to investigate the bioavailability of T2 and its impact on vitamin D metabolism and Fgf23 expression. UMR106 and IDG-SW3 bone cell lines were used to elucidate the effect of T2 on FGF23 synthesis and the corresponding mechanisms. LC-MS/MS analysis found high concentrations of T2 in tissues and plasma of mice fed 4 vs. 0 mg/kg T2 for 2 weeks, accompanied by a significant decrease in plasma 1,25(OH)2D and increased renal Cyp24a1 mRNA abundance. The Fgf23 mRNA abundance in bones of mice fed T2 was moderately higher than that in control mice. The expression of Fgf23 strongly increased in UMR106 cells treated with T2. After Vdr silencing, the T2 effect on Fgf23 diminished. This effect is presumably mediated by single-hydroxylated T2-derivatives, since siRNA-mediated silencing of Cyp27a1, but not Cyp27b1, resulted in a marked reduction in T2-induced Fgf23 gene expression. To conclude, T2 is a potent regulator of Fgf23 synthesis in bone and activates Vdr. This effect depends, at least in part, on the action of Cyp27a1. The potential of oral T2 to modulate vitamin D metabolism and FGF23 synthesis raises questions about the safety of UV-B-treated foods.

2.
Mol Nutr Food Res ; 65(14): e2001165, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34061442

RESUMO

SCOPE: The treatment of food with ultraviolet-B (UV-B) light to increase the vitamin D content is accompanied by the formation of photoisomers, such as lumisterol2 . The physiological impact of photoisomers is largely unknown. METHODS AND RESULTS: Three groups of C57Bl/6 mice are fed diets containing 50 µg kg-1 deuterated vitamin D3 with 0, 50 (moderate-dose) or 2000 µg kg-1 (high-dose) lumisterol2 for four weeks. Considerable quantities of lumisterol2 and vitamin D2 are found in the plasma and tissues of mice fed with 2000 µg kg-1 lumisterol2 but not in those fed 0 or 50 µg kg-1 lumisterol2 . Mice fed with 2000 µg kg-1 lumisterol2 showed strongly reduced deuterated 25-hydroxyvitamin D3 (-50%) and calcitriol (-80%) levels in plasma, accompanied by downregulated mRNA abundance of cytochrom P450 (Cyp)27b1 and upregulated Cyp24a1 in the kidneys. Increased tissue levels of vitamin D2 were also seen in mice in a second study that are kept on a diet with 0.2% UV-B exposed yeast versus those fed 0.2% untreated yeast containing iso-amounts of vitamin D2 . CONCLUSION: High doses of lumisterol2 can enter the body, induce the formation of vitamin D2 , reduce the levels of 25(OH)D3 and calcitriol and strongly impact the expression of genes involved in the degradation and synthesis of bioactive vitamin D.


Assuntos
Ergosterol/farmacologia , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Administração Oral , Animais , Calcifediol/sangue , Calcitriol/sangue , Dieta , Rim/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Saccharomyces cerevisiae/efeitos da radiação , Raios Ultravioleta , Vitamina D3 24-Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA