Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Enzyme Inhib Med Chem ; 39(1): 2343352, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38700244

RESUMO

In the last decade, an increasing interest in compounds containing pyrazolo[4,3-e][1,2,4]triazine moiety is observed. Therefore, the aim of the research was to synthesise a novel sulphonyl pyrazolo[4,3-e][1,2,4]triazines (2a, 2b) and pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide derivatives (3a, 3b) to assess their anticancer activity. The MTT assay showed that 2a, 2b, 3a, 3b have stronger cytotoxic activity than cisplatin in both breast cancer cells (MCF-7 and MDA-MB-231) and exhibited weaker effect on normal breast cells (MCF-10A). The obtained results showed that the most active compound 3b increased apoptosis via caspase 9, caspase 8, and caspase 3/7. It is worth to note that compound 3b suppressed NF-κB expression and promoted p53, Bax, and ROS which play important role in activation of apoptosis. Moreover, our results confirmed that compound 3b triggers autophagy through increased formation of autophagosomes, expression of beclin-1 and mTOR inhibition. Thus, our study defines a possible mechanism underlying 3b-induced anti-cancer activity against breast cancer cell lines.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Sulfonamidas , Triazinas , Humanos , Triazinas/farmacologia , Triazinas/química , Triazinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Tumorais Cultivadas , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Feminino , Linhagem Celular Tumoral , Esferoides Celulares/efeitos dos fármacos
2.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677762

RESUMO

Allenes with two carbon-carbon double bonds belong to a unique class of unsaturated hydrocarbons. The central carbon atom of allene is sp hybridized and forms two σ-bonds and two π-bonds with two terminal sp2 hybridized carbon atoms. The chemistry of allenes has been well documented over the last decades. They are more reactive than alkenes due to higher strain and exhibit significant axial chirality, thus playing a vital role in asymmetric synthesis. Over a variety of organic transformations, allenes specifically undergo classical metal catalyzed cycloaddition reactions to obtain chemo-, regio- and stereoselective cycloadducts. This review briefly describes different types of annulations including [2+2], [2+2+1], [3+2], [2+2+2], [4+2], [5+2], [6+2] cycloadditions using titanium, cobalt, rhodium, nickel, palladium, platinum, gold and phosphine catalyzed reactions along with a mechanistic study of some highlighted protocols. The synthetic applications of these reactions towards the synthesis of natural products such as aristeromycin, ent-[3]-ladderanol, waihoensene(-)-vindoline and (+)-4-epi-vindoline have also been described.

3.
Molecules ; 28(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570621

RESUMO

Simmons-Smith cyclopropanation is a widely used reaction in organic synthesis for stereospecific conversion of alkenes into cyclopropane. The utility of this reaction can be realized by the fact that the cyclopropane motif is a privileged synthetic intermediate and a core structural unit of many biologically active natural compounds such as terpenoids, alkaloids, nucleosides, amino acids, fatty acids, polyketides and drugs. The modified form of Simmons-Smith cyclopropanation involves the employment of Et2Zn and CH2I2 (Furukawa reagent) toward the total synthesis of a variety of structurally complex natural products that possess broad range of biological activities including anticancer, antimicrobial and antiviral activities. This review aims to provide an intriguing glimpse of the Furukawa-modified Simmons-Smith cyclopropanation, within the year range of 2005 to 2022.


Assuntos
Alcaloides , Produtos Biológicos , Produtos Biológicos/química , Alcaloides/química , Ciclização , Nucleosídeos , Ciclopropanos/química
4.
Molecules ; 28(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298842

RESUMO

The Corey-Seebach reagent plays an important role in organic synthesis because of its broad synthetic applications. The Corey-Seebach reagent is formed by the reaction of an aldehyde or a ketone with 1,3-propane-dithiol under acidic conditions, followed by deprotonation with n-butyllithium. A large variety of natural products (alkaloids, terpenoids, and polyketides) can be accessed successfully by utilizing this reagent. This review article focuses on the recent contributions (post-2006) of the Corey-Seebach reagent towards the total synthesis of natural products such as alkaloids (lycoplanine A, diterpenoid alkaloids, etc.), terpenoids (bisnorditerpene, totarol, etc.), polyketide (ambruticin J, biakamides, etc.), and heterocycles such as rodocaine and substituted pyridines, as well and their applications towards important organic synthesis.


Assuntos
Alcaloides , Produtos Biológicos , Policetídeos , Indicadores e Reagentes , Terpenos
5.
Molecules ; 28(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985698

RESUMO

Sharpless asymmetric dihydroxylation is an important reaction in the enantioselective synthesis of chiral vicinal diols that involves the treatment of alkene with osmium tetroxide along with optically active quinine ligand. Sharpless introduced this methodology after considering the importance of enantioselectivity in the total synthesis of medicinally important compounds. Vicinal diols, produced as a result of this reaction, act as intermediates in the synthesis of different naturally occurring compounds. Hence, Sharpless asymmetric dihydroxylation plays an important role in synthetic organic chemistry due to its undeniable contribution to the synthesis of biologically active organic compounds. This review emphasizes the significance of Sharpless asymmetric dihydroxylation in the total synthesis of various natural products, published since 2020.


Assuntos
Produtos Biológicos , Hidroxilação , Produtos Biológicos/química , Alcenos , Estereoisomerismo
6.
Molecules ; 28(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38138522

RESUMO

The Petasis reaction, also called the Petasis Borono-Mannich reaction, is a multicomponent reaction that couples a carbonyl derivative, an amine and boronic acids to yield substituted amines. The reaction proceeds efficiently in the presence or absence of a specific catalyst and solvent. By employing this reaction, a diverse range of chiral derivatives can easily be obtained, including α-amino acids. A broad substrate scope, high yields, distinct functional group tolerance and the availability of diverse catalytic systems constitute key features of this reaction. In this review article, attention has been drawn toward the recently reported methodologies for executing the Petasis reaction to produce structurally simple to complex aryl/allyl amino scaffolds.

7.
Molecules ; 27(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35164286

RESUMO

Ultrasound- and microwave-assisted green synthetic strategies were applied to furnish benzofuran-oxadiazole 5a-g and benzofuran-triazole 7a-h derivatives in good to excellent yields (60-96%), in comparison with conventional methods (36-80% yield). These synthesized derivatives were screened for hemolysis, thrombolysis and anticancer therapeutic potential against an A549 lung cancer cell line using an MTT assay. Derivatives 7b (0.1%) and 5e (0.5%) showed the least toxicity against RBCs. Hybrid 7f showed excellent thrombolysis activity (61.4%) when compared against reference ABTS. The highest anticancer activity was displayed by the 5d structural hybridwith cell viability 27.49 ± 1.90 and IC50 6.3 ± 0.7 µM values, which were considerably lower than the reference drug crizotinib (IC50 8.54 ± 0.84 µM). Conformational analysis revealed the spatial arrangement of compound 5d, which demonstrated its significant potency in comparison with crizotinib; therefore, scaffold 5d would be a promising anticancer agent on the basis of cytotoxicity studies, as well as in silico modeling studies.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Oxidiazóis/farmacologia , Triazóis/farmacologia , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofuranos/síntese química , Benzofuranos/química , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Hemólise/efeitos dos fármacos , Humanos , Micro-Ondas , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Oxidiazóis/síntese química , Oxidiazóis/química , Triazóis/síntese química , Triazóis/química
8.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268704

RESUMO

Coumarin is an important six-membered aromatic heterocyclic pharmacophore, widely distributed in natural products and synthetic molecules. The versatile and unique features of coumarin nucleus, in combination with privileged sulfonamide moiety, have enhanced the broad spectrum of biological activities. The research and development of coumarin, sulfonamide-based pharmacology, and medicinal chemistry have become active topics, and attracted the attention of medicinal chemists, pharmacists, and synthetic chemists. Coumarin sulfonamide compounds and analogs as clinical drugs have been used to cure various diseases with high therapeutic potency, which have shown their enormous development value. The diversified and wide array of biological activities such as anticancer, antibacterial, anti-fungal, antioxidant and anti-viral, etc. were displayed by diversified coumarin sulfonamides. The present systematic and comprehensive review in the current developments of synthesis and the medicinal chemistry of coumarin sulfonamide-based scaffolds give a whole range of therapeutics, especially in the field of oncology and carbonic anhydrase inhibitors. In the present review, various synthetic approaches, strategies, and methodologies involving effect of catalysts, the change of substrates, and the employment of various synthetic reaction conditions to obtain high yields is cited.


Assuntos
Antineoplásicos , Sulfonamidas , Antineoplásicos/química , Inibidores da Anidrase Carbônica/química , Cumarínicos/química , Relação Estrutura-Atividade , Sulfonamidas/química
9.
Molecules ; 27(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080422

RESUMO

Hiyama cross-coupling is a versatile reaction in synthetic organic chemistry for the construction of carbon-carbon bonds. It involves the coupling of organosilicons with organic halides using transition metal catalysts in good yields and high enantioselectivities. In recent years, hectic progress has been made by researchers toward the synthesis of diversified natural products and pharmaceutical drugs using the Hiyama coupling reaction. This review emphasizes the recent synthetic developments and applications of Hiyama cross-coupling.


Assuntos
Paládio , Elementos de Transição , Carbono/química , Catálise , Química Orgânica , Paládio/química
10.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296545

RESUMO

The Mitsunobu reaction plays a vital part in organic chemistry due to its wide synthetic applications. It is considered as a significant reaction for the interconversion of one functional group (alcohol) to another (ester) in the presence of oxidizing agents (azodicarboxylates) and reducing agents (phosphines). It is a renowned stereoselective reaction which inverts the stereochemical configuration of end products. One of the most important applications of the Mitsunobu reaction is its role in the synthesis of natural products. This review article will focus on the contribution of the Mitsunobu reaction towards the total synthesis of natural products, highlighting their biological potential during recent years.


Assuntos
Produtos Biológicos , Fosfinas , Substâncias Redutoras , Ésteres , Oxidantes
11.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014583

RESUMO

The plant Caralluma edulis is traditionally used against diabetes and inflammatory conditions in Pakistan. This study was designed to provide scientific validation of the traditional use of Caralluma edulis. Phytochemicals were extracted from the plant by different solvents (distilled water, methanol, ethanol, and acetone) using the Soxhlet's extraction method. Bioactive compounds were detected by gas chromatography-mass spectrometry (GC-MS). The in vitro anti-inflammatory activities (albumin denaturation, membrane stabilization, and proteinase inhibition) and antioxidant capacity (DPPH scavenging activity, FRAP reducing activity) of different extracts from Caralluma edulis were assessed. The antidiabetic potential of Caralluma edulis plant extracts was determined in acute and subacute diabetic rabbit models. Oxidative stress and enzymatic antioxidant status were also estimated in MDA, CAT, and SOD levels. Results showed that the methanol extract yielded the highest contents of phenolics, flavonoids, alkaloids, and terpenoids. The in vitro anti-inflammatory activity and antioxidant potential of the methanol extract were the highest among the tested solvents. The tested extracts did not show any remarkable antidiabetic activity in the acute diabetic model. However, all tested extracts demonstrated antidiabetic potential in the subacute diabetic model. No adverse effect was observed at the tested dose (200 mg/kg) of Caralluma edulis extracts in experimental animals. It is concluded that methanol is the key solvent for extracting bioactive compounds from Caralluma edulis. The plant can be used against inflammatory disorders and may prove a potential candidate for drug development. Long-term use of Caralluma edulis at the tested dose (200 mg/kg) showed antidiabetic properties in the animal model.


Assuntos
Apocynaceae , Diabetes Mellitus , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/química , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/química , Metanol , Compostos Fitoquímicos/química , Extratos Vegetais/química , Coelhos , Solventes/química
12.
J Enzyme Inhib Med Chem ; 36(1): 1509-1520, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34238110

RESUMO

In the present study, a series of azo derivatives (TR-1 to TR-9) have been synthesised via the diazo-coupling approach between substituted aromatic amines with phenol or naphthol derivatives. The compounds were evaluated for their therapeutic applications against alpha-glucosidase (anti-diabetic) and pathogenic bacterial strains E. coli (gram-negative), S. aureus (gram-positive), S. aureus (gram-positive) drug-resistant strain, P. aeruginosa (gram-negative), P. aeruginosa (gram-negative) drug-resistant strain and P. vulgaris (gram-negative). The IC50 (µg/mL) of TR-1 was found to be most effective (15.70 ± 1.3 µg/mL) compared to the reference drug acarbose (21.59 ± 1.5 µg/mL), hence, it was further selected for the kinetic studies in order to illustrate the mechanism of inhibition. The enzyme inhibitory kinetics and mode of binding for the most active inhibitor (TR-1) was performed which showed that the compound is a non-competitive inhibitor and effectively inhibits the target enzyme by binding to its binuclear active site reversibly.


Assuntos
Antibacterianos/farmacologia , Compostos Azo/farmacologia , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Compostos Azo/síntese química , Compostos Azo/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Cinética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Staphylococcus aureus/efeitos dos fármacos
13.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562512

RESUMO

The molecule CD200, described many years ago as a naturally occurring immunomodulatory agent, capable of regulating inflammation and transplant rejection, has attracted additional interest over the past years with the realization that it may also serve as an important marker for progressive malignancy. A large body of evidence also supports the hypothesis that this molecule can contribute to immunoregulation of, among other diseases, infection, autoimmune disease and allergy. New data have also come to light to characterize the receptors for CD200 (CD200R) and their potential mechanism(s) of action at the biochemical level, as well as the description of a novel natural antagonist of CD200, lacking the NH2-terminal region of the full-length molecule. Significant controversies exist concerning the relative importance of CD200 as a ligand for all reported CD200Rs. Nevertheless, some progress has been made in the identification of the structural constraints determining the interaction between CD200 and CD200R, and this information has in turn proved of use in developing novel small molecule agonists/antagonists of the interaction. The review below highlights many of these newer findings, and attempts to place them in the broad context of our understanding of the role of CD200-CD200R interactions in a variety of human diseases.


Assuntos
Antígenos CD/metabolismo , Imunomodulação , Glicoproteínas de Membrana/metabolismo , Receptores de Orexina/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Doenças Autoimunes/imunologia , Regulação da Expressão Gênica , Sobrevivência de Enxerto , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Imunomodulação/genética , Infecções/imunologia , Inflamação/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Receptores de Orexina/genética , Receptores de Orexina/imunologia , Domínios e Motivos de Interação entre Proteínas
14.
Molecules ; 26(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443460

RESUMO

Synthetic heterocyclic compounds have incredible potential against different diseases; pyridines, phenolic compounds and the derivatives of azo moiety have shown excellent antimicrobial, antiviral, antidiabetic, anti-melanogenic, anti-ulcer, anticancer, anti-mycobacterial, anti-inflammatory, DNA binding and chemosensing activities. In the present review, the above-mentioned activities of the nitrogen-containing heterocyclic compounds (pyridines), hydroxyl (phenols) and azo derivatives are discussed with reference to the minimum inhibitory concentration and structure-activity relationship, which clearly indicate that the presence of nitrogen in the phenyl ring; in addition, the hydroxyl substituent and the incorporation of a diazo group is crucial for the improved efficacies of the compounds in probing different diseases. The comparison was made with the reported drugs and new synthetic derivatives that showed recent therapeutic perspectives made in the last five years.


Assuntos
Compostos Azo/uso terapêutico , Fenóis/uso terapêutico , Piridinas/uso terapêutico , Compostos Azo/síntese química , Compostos Azo/química , Imageamento Tridimensional , Fenóis/síntese química , Fenóis/química , Piridinas/síntese química , Piridinas/química
15.
Molecules ; 25(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872493

RESUMO

This review focuses on the cytotoxic effect of new synthetic pyrazolo[4,3-e][1,2,4]triazine derivatives against different tumor cell lines. Some annulated pyrazolotriazines i.e., pyrazolo[4,3-e][1,2,4]triazolo[4,3-b][1,2,4]triazines and pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine demonstrated significant broad cytotoxic activity in micromolar range concentration, which could have excellent potential to be new candidate therapeutic agents in cancer chemotherapy.


Assuntos
Antineoplásicos , Pirazóis , Sulfonamidas , Triazinas , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/farmacocinética , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Triazinas/síntese química , Triazinas/farmacologia
16.
J Enzyme Inhib Med Chem ; 34(1): 1-11, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31456445

RESUMO

The over expression of melanogenic enzymes like tyrosinase caused many hyperpigmentaion disorders. The present work describes the synthesis of hydroxy substituted 2-[(4-acetylphenyl)amino]-2-oxoethyl derivatives 3a-e and 5a-e as antimelanogenic agents. The tyrosinase inhibitory activity of synthesized derivatives 3a-e and 5a-e was determined and it was found that derivative 5c possesses excellent activity with IC50 = 0.0089 µM compared to standard kojic acid (IC50 = 16.69 µM). The presence of hydroxyl groups at the ortho and the para position of cinnamic acid phenyl ring in compound 5c plays a vital role in tyrosinase inhibitory activity. The compound 5d also exhibited good activity (IC50 = 8.26 µM) compared to standard kojic acid. The enzyme inhibitory kinetics results showed that compound 5c is a competitive inhibitor while 5d is a mixed-type inhibitor. The mode of binding for compounds 5c and 5d with tyrosinase enzyme was also assessed and it was found that both derivatives irreversibly bind with target enzyme. The molecular docking and molecular dynamic simulation studies were also performed to find the position of attachment of synthesized compounds at tyrosinase enzyme (PDB ID 2Y9X). The results showed that all of the synthesized compounds bind well with the active binding sites and most potent derivative 5c formed stable complex with target protein. The cytotoxicity results showed that compound 5c is safe at a dose of 12 µg/mL against murine melanoma (B16F10) cells. The same dose of 5c was selected to determine antimelanogenic activity; the results showed that it produced antimelenogenic effects in murine melanoma (B16F10) cells. Based on our investigations, it was proposed that compound 5c may serve as a lead structure to design more potent antimelanogenic agents.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Radical Hidroxila/farmacologia , Melanoma/tratamento farmacológico , Monofenol Mono-Oxigenase/antagonistas & inibidores , Fenóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Radical Hidroxila/síntese química , Radical Hidroxila/química , Cinética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Fenóis/síntese química , Fenóis/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
J Enzyme Inhib Med Chem ; 32(1): 99-105, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27778522

RESUMO

A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their tyrosinase and urease inhibitory activity. Evaluation of prepared derivatives demonstrated that compounds (8b) and (8j) are most potent mushroom tyrosinase inhibitors whereas all of the obtained compounds showed higher urease inhibitory activity than the standard thiourea. The compounds (8a), (8f) and (8i) exhibited excellent enzyme inhibitory activity with IC50 0.037, 0.044 and 0.042 µM, respectively, while IC50 of thiourea is 20.9 µM.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Pirazóis/química , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Triazinas/química , Urease/antagonistas & inibidores , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Concentração Inibidora 50 , Espectroscopia de Prótons por Ressonância Magnética , Estereoisomerismo
19.
ACS Omega ; 9(10): 12146-12157, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496949

RESUMO

The current research focuses on the green synthesis of silver nanoparticles (AgNPs) using a polar extract of taro corms and the evaluation of its antioxidant properties and wound-healing applications. Taro corm extract (100 mL) was treated with a 5 mM AgNO3 solution (100 mL) at room temperature for the formation of AgNPs, and a color change was observed. The surface plasmon resonance (SPR) peaks in their UV-visible spectra appeared at a range of 438-445 nm. Fourier transform infrared, scanning electron microscopy, energy-dispersive X-ray, dynamic light scattering, and X-ray diffraction were used for the characterization of the taro corms extract-mediated AgNPs (TCE-AgNPs). The synthesized AgNPs were crystalline and spherical, with an average size of 244.9-272.2 nm with a polydispersity index of 0.530 and zeta potential of -18.8 mV, respectively. The antibacterial potential of TCE-AgNPs was tested, and the inhibition zones detected against Cronobacter sakazakii, Pseudomonas aeruginosa, Listeria monocytogenes, and Enterococcus faecalis were 28, 26, 18, and 13 mm, respectively. Furthermore, the antioxidant activity of TCE-AgNPs showed significant radical-scavenging activity compared to the standard used. Collagen content data collected from regenerated tissue and higher collagen content indicated rapid wound healing compared to others, which was seen in a group treated with TCE-AgNP film bandages.

20.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37895877

RESUMO

Curcumin's applications in the treatment of conditions including osteoarthritis, dementia, malignancies of the pancreas, and malignancies of the intestines have drawn increasing attention. It has several wonderful qualities, including being an anti-inflammatory agent, an anti-mutagenic agent, and an antioxidant, and has substantially reduced inherent cytotoxicity outcomes. Although curcumin possesses multiple known curative properties, due to its limited bioavailability, it is necessary to develop efficient strategies to overcome these hurdles. To establish an effective administration method, various niosomal formulations were optimized using the Box-Behnken design and assessed in the current investigation. To examine the curcumin niosomes, zeta sizer, zeta potential, entrapment efficiency, SEM, antioxidant potential, cytotoxicity, and release studies were performed. The optimized curcumin niosomes exhibited an average particle size of 169.4 nm, a low PDI of 0.189, and high entrapment efficiency of 85.4%. The release profile showed 79.39% curcumin after 24 h and had significantly higher antioxidant potential as compared with that of free curcumin. The cytotoxicity results of curcumin niosomes presented increased mortality in human ovarian cancer A2780.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA