RESUMO
This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber-physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT). The technological transformation of healthcare systems to telemedicine, e-health, connected health, and remote health is being made possible with the sophisticated integration of IoMT with machine learning, big data, artificial intelligence (AI), and other technologies. As healthcare systems are becoming more accessible and advanced, security and privacy have become pivotal for the smooth integration and functioning of various systems in H-CPSs. In this work, we present a novel approach that integrates PUF with IOTA Tangle and blockchain and works by storing the PUF keys of a patient's Body Area Network (BAN) inside blockchain to access, store, and share globally. Each patient has a network of smart wearables and a gateway to obtain the physiological sensor data securely. To facilitate communication among various stakeholders in healthcare systems, IOTA Tangle's Masked Authentication Messaging (MAM) communication protocol has been used, which securely enables patients to communicate, share, and store data on Tangle. The MAM channel works in the restricted mode in the proposed architecture, which can be accessed using the patient's gateway PUF key. Furthermore, the successful verification of PUF enables patients to securely send and share physiological sensor data from various wearable and implantable medical devices embedded with PUF. Finally, healthcare system entities like physicians, hospital admin networks, and remote monitoring systems can securely establish communication with patients using MAM and retrieve the patient's BAN PUF keys from the blockchain securely. Our experimental analysis shows that the proposed approach successfully integrates three security primitives, PUF, blockchain, and Tangle, providing decentralized access control and security in H-CPS with minimal energy requirements, data storage, and response time.
Assuntos
Inteligência Artificial , Blockchain , Humanos , Segurança Computacional , Computadores , Atenção à Saúde/métodosRESUMO
Due to the enormous amounts of data being generated between users, Intelligent Transportation Systems (ITS) are complex Cyber-Physical Systems that necessitate a reliable and safe infrastructure. Internet of Vehicles (IoV) is the term that describes the interconnection for every single node, device, sensor, and actuator that are Internet enabled, whether attached or unattached to vehicles. A single smart vehicle will generate a huge amount of data. Concurrently, it needs an instant response to avoid accidents since vehicles are fast-moving objects. In this work, we explore Distributed Ledger Technology (DLT) and collect data about consensus algorithms and their applicability to be used in the IoV as the backbone of ITS. Multiple distributed ledger networks are currently in operation. Some are used in finance or supply chains, and others are used for general decentralized applications. Despite the secure and decentralized nature of the blockchain, each of these networks has trade-offs and compromises. Based on the analysis of consensus algorithms, a conclusion has been made to design one that fits the requirements of ITS-IOV. FlexiChain 3.0 is proposed in this work to serve as a Layer0 network for different stakeholders in the IoV. A time analysis has been conducted and shows a capacity of 2.3 transactions per second, which is an acceptable speed to be used in IoV. Moreover, a security analysis was conducted as well and shows high security and high independence of the node number in terms of security level per the number of participants.
RESUMO
Groundwater overuse in different domains will eventually lead to global freshwater scarcity. To meet the anticipated demands, many governments worldwide are employing innovative and traditional techniques for forecasting groundwater availability by conducting research and studies. One challenging step for this type of study is collecting groundwater data from different sites and securely sending it to the nearby edges without exposure to hacking and data tampering. In the current paper, we send raw data formats from the Internet of Things to the Distributed Data Storage (DDS) and Blockchain (BC) edges. We use a distributed and decentralized architecture to store the statistics, perform double hashing, and implement access control through smart contracts. This work demonstrates a modern and innovative approach combining DDS and BC technologies to overcome traditional data sharing, and centralized storage, while addressing blockchain limitations. We have shown performance improvements with increased data quality and integrity.
Assuntos
Blockchain , Água Subterrânea , Confiabilidade dos Dados , Segurança Computacional , Armazenamento e Recuperação da InformaçãoRESUMO
It is a known fact that large quantities of farm and meat products rot and are wasted if correct actions are not taken, which may lead to serious health issues if consumed. There is no proper system for tracking and communicating the status of the goods to their respective stakeholders in a secure way. Consumers have every right to know the quality of the products they consume. Using monitoring tools, such as the Internet of Agricultural Things (IoAT), and modern data protection techniques for storing and sharing, will help mitigate data integrity issues during the transmission of sensor records, increasing the data quality. The visibility state at the customer end is also improved, and they are aware of the agricultural product's conditions throughout the real-time distribution process. In this paper, we developed and implemented a CorDapp application to manage the data for the supply chain, called "agroString". We collected the temperature and humidity data using IoAT-Edge devices and various datasets from multiple sources. We then sent those readings to the CorDapp agroString and successfully shared them among the relevant parties. With the help of a Corda private blockchain, we attempted to increase data integrity, trust, visibility, provenance, and quality at each logistic step, while decreasing blockchain and central system limitations.
Assuntos
Blockchain , Internet das Coisas , Segurança Computacional , Publicações , ConfiançaRESUMO
This article presents the first-ever hardware-assisted blockchain for simultaneously handling device and data security in smart healthcare. This article presents the hardware security primitive physical unclonable functions (PUF) and blockchain technology together as PUFchain 2.0 with a two-level authentication mechanism. The proposed PUFchain 2.0 security primitive presents a scalable approach by allowing Internet of Medical Things (IoMT) devices to connect and obtain PUF keys from the edge server with an embedded PUF module instead of connecting a PUF module to each device. The PUF key, once assigned to a particular media access control (MAC) address by the miner, will be unique for that MAC address and cannot be assigned to other devices. PUFs are developed based on internal micro-manufacturing process variations during chip fabrication. This property of PUFs is integrated with blockchain by including the PUF key of the IoMT into blockchain for authentication. The robustness of the proposed Proof of PUF-Enabled authentication consensus mechanism in PUFchain 2.0 has been substantiated through test bed evaluation. Arbiter PUFs have been used for the experimental validation of PUFchain 2.0. From the obtained 200 PUF keys, 75% are reliable and the Hamming distance of the PUF module is 48%. Obtained database outputs along with other metrics have been presented for validating the potential of PUFchain 2.0 in smart healthcare.
RESUMO
With the world facing the new virus SARS-CoV-2, many countries have introduced instant Internet applications to identify people carrying the infection. Internet-of-Medical-Things (IoMT) have proven useful in collecting medical data as well in tracing an individual carrying the virus. The data collected or traced belongs to an individual and should be revealed to themselves and hospital providers, but not to any third-party unauthorized agencies. In this paper we use an off-chain distributed storage solution for loading large medical data sets and a blockchain implementation to securely transfer the data from the infected person to the hospital system using the edge infrastructure, and call it CoviChain. The Coronavirus Disease (COVID-19) statistics are loaded on to the edge, and moved to InterPlanetary File Systems (IPFS) storage to retrieve the hash of the data file. Once the hash is obtained, it is moved to the blockchain by means of smart contracts. As the information is being hashed twice, CoviChain addresses the security and privacy issues and avoid exposing individuals' data while achieving larger data storage on the blockchain with reduced cost and time.