Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 56(5): 1078-87, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23429921

RESUMO

AIMS/HYPOTHESIS: The activation of NADPH oxidase has been implicated in NEFA-induced beta cell dysfunction. However, the causal role of this activation in vivo remains unclear. Here, using rodents, we investigated whether pharmacological or genetic inhibition of NADPH oxidase could prevent NEFA-induced beta cell dysfunction in vivo. METHODS: Normal rats were infused for 48 h with saline or oleate with or without the NADPH oxidase inhibitor apocynin. In addition, NADPH oxidase subunit p47(phox)-null mice and wild-type littermate controls were infused with saline or oleate for 48 h. This was followed by measurement of NADPH oxidase activity, reactive oxygen species (ROS) and superoxide imaging and assessment of beta cell function in isolated islets and hyperglycaemic clamps. RESULTS: Oleate infusion in rats increased NADPH oxidase activity, consistent with increased total but not mitochondrial superoxide in islets and impaired beta cell function in isolated islets and during hyperglycaemic clamps. Co-infusion of apocynin with oleate normalised NADPH oxidase activity and total superoxide levels and prevented beta cell dysfunction. Similarly, 48 h NEFA elevation in wild-type mice increased total but not mitochondrial superoxide and impaired beta cell function in isolated islets. p47(phox)-null mice were protected against these effects when subjected to 48 h oleate infusion. Finally, oleate increased the levels of total ROS, in both models, whereas inhibition of NADPH oxidase prevented this increase, suggesting that NADPH oxidase is the main source of ROS in this model. CONCLUSIONS/INTERPRETATION: These data show that NADPH-oxidase-derived cytosolic superoxide is increased in islets upon oleate infusion in vivo; and whole-body NADPH-oxidase inhibition decreases superoxide in concert with restoration of islet function.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo , Acetofenonas/administração & dosagem , Acetofenonas/farmacologia , Animais , Citosol/efeitos dos fármacos , Citosol/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Ácidos Graxos não Esterificados/administração & dosagem , Ácidos Graxos não Esterificados/efeitos adversos , Feminino , Infusões Intravenosas , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Ácido Oleico/administração & dosagem , Ácido Oleico/efeitos adversos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
2.
Diabetologia ; 55(5): 1366-79, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22396011

RESUMO

AIMS/HYPOTHESIS: Endoplasmic reticulum (ER) stress has been implicated in glucose-induced beta cell dysfunction. However, its causal role has not been established in vivo. Our objective was to determine the causal role of ER stress and its link to oxidative stress in glucose-induced beta cell dysfunction in vivo. METHODS: Healthy Wistar rats were infused i.v. with glucose for 48 h to achieve 20 mmol/l hyperglycaemia with or without the co-infusion of the superoxide dismutase mimetic tempol (TPO), or the chemical chaperones 4-phenylbutyrate (PBA) or tauroursodeoxycholic acid (TUDCA). This was followed by assessment of beta cell function and measurement of ER stress markers and superoxide in islets. RESULTS: Glucose infusion for 48 h increased mitochondrial superoxide and ER stress markers and impaired beta cell function. Co-infusion of TPO, which we previously found to reduce mitochondrial superoxide and prevent glucose-induced beta cell dysfunction, reduced ER stress markers. Similar to findings with TPO, co-infusion of PBA, which decreases mitochondrial superoxide, prevented glucose-induced beta cell dysfunction in isolated islets. TUDCA was also effective. Also similar to findings with TPO, PBA prevented beta cell dysfunction during hyperglycaemic clamps in vivo and after hyperglycaemia (15 mmol/l) for 96 h. CONCLUSIONS/INTERPRETATION: Here, we causally implicate ER stress in hyperglycaemia-induced beta cell dysfunction in vivo. We show that: (1) there is a positive feedback cycle between oxidative stress and ER stress in glucose-induced beta cell dysfunction, which involves mitochondrial superoxide; and (2) this cycle can be interrupted by superoxide dismutase mimetics as well as chemical chaperones, which are of potential interest to preserve beta cell function in type 2 diabetes.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glucose/efeitos adversos , Células Secretoras de Insulina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Feminino , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Fenilbutiratos/farmacologia , Ratos , Ratos Wistar , Marcadores de Spin , Superóxidos/análise , Ácido Tauroquenodesoxicólico/farmacologia
3.
Diabetologia ; 55(9): 2522-32, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22653270

RESUMO

AIMS/HYPOTHESIS: Reactive oxygen species (ROS) contribute to diabetes-induced glomerular injury and endoplasmic reticulum (ER) stress-induced beta cell dysfunction, but the source of ROS has not been fully elucidated. Our aim was to determine whether p47(phox)-dependent activation of NADPH oxidase is responsible for hyperglycaemia-induced glomerular injury in the Akita mouse, a model of type 1 diabetes mellitus resulting from ER stress-induced beta cell dysfunction. METHODS: We examined the effect of deleting p47 (phox) (also known as Ncf1), the gene for the NADPH oxidase subunit, on diabetic nephropathy in the Akita mouse (Ins2 (WT/C96Y)) by studying four groups of mice: (1) non-diabetic mice (Ins2 (WT/WT)/p47 (phox+/+)); (2) non-diabetic p47 (phox)-null mice (Ins2 (WT/WT)/p47 (phox-/-)); (3) diabetic mice: (Ins2 (WT/C96Y)/p47 (phox+/+)); and (4) diabetic p47 (phox)-null mice (Ins2 (WT/C96Y)/p47 (phox-/-)). We measured the urinary albumin excretion rate, oxidative stress, mesangial matrix expansion, and plasma and pancreatic insulin concentrations in 16-week-old mice; we also measured glucose tolerance and insulin sensitivity, islet and glomerular NADPH oxidase activity and subunit expression, and pro-fibrotic gene expression in 8-week-old mice. In addition, we measured NADPH oxidase activity, subunit expression and pro-fibrotic gene expression in high glucose-treated murine mesangial cells. RESULTS: Deletion of p47 (phox) reduced kidney hypertrophy, oxidative stress and mesangial matrix expansion, and also reduced hyperglycaemia by increasing pancreatic and circulating insulin concentrations. p47 (phox-/-) mice exhibited improved glucose tolerance, but modestly decreased insulin sensitivity. Deletion of p47 (phox) attenuated high glucose-induced activation of NADPH oxidase and pro-fibrotic gene expression in glomeruli and mesangial cells. CONCLUSIONS/INTERPRETATION: Deletion of p47 (phox) attenuates diabetes-induced glomerular injury and beta cell dysfunction in the Akita mouse.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Nefropatias Diabéticas/fisiopatologia , Deleção de Genes , Hiperglicemia/fisiopatologia , Glomérulos Renais/fisiopatologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Regulação Enzimológica da Expressão Gênica , Hiperglicemia/genética , Glomérulos Renais/lesões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/genética , Estresse Oxidativo
4.
Diabetologia ; 54(10): 2483-93, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21789690

RESUMO

AIMS/HYPOTHESIS: A growing body of research suggests that the prevalence of major depressive disorder (MDD) in children and youth with type 1 diabetes mellitus is significantly higher than that of youth without type 1 diabetes and is associated with increased illness severity. The objective of this article is to review the current literature on the pathophysiology of these two common diseases with respect to potential areas of overlapping biological dysfunction. METHODS: A search of English language articles published between 1966 and 2010 was conducted and augmented with manual review of reference lists from the identified publications. RESULTS: The evidence suggests plausible mechanisms whereby a biological relationship between type 1 diabetes and MDD may exist. These include the effects of circulating cytokines associated with autoimmune diabetes, the direct impact of insulin deficiency on neurogenesis/neurotransmitter metabolism, the effects of the chronic hyperglycaemic state, occurrence of iatrogenic hypoglycaemia and the impact of basal hyperactivity of the hypothalamic-pituitary-adrenal axis. CONCLUSIONS/INTERPRETATION: Shared biological vulnerabilities may be implicated in the comorbidity of type 1 diabetes and MDD. Further research is warranted to determine the magnitude of associations and confirm their observation in clinical populations.


Assuntos
Transtorno Depressivo Maior/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Animais , Transtorno Depressivo Maior/epidemiologia , Diabetes Mellitus Tipo 1/epidemiologia , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Estresse Oxidativo/fisiologia , Sistema Hipófise-Suprarrenal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA