Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 245: 118080, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171469

RESUMO

In the present work, the construction, and operation of a pilot-scale biogas upgrading system is presented, employing 2 commercial polyimide (PI) membranes. The Upgrading system treats biogas produced via anaerobic digestion of the sludge, produced from the treatment of municipal wastewater in the facilities of Thessaloniki's Wastewater Treatment Plant. The goal of the separation unit is the production of high purity biomethane (>95%) for potential reuse in terms of energy. The fabrication of the pilot scale system includes the scale up of a laboratory setup separating CO2 from binary CH4-CO2 gas mixture. After the stability tests of the process, for the operation of 5 months (February to June 2023) the purity and recovery of CH4 in the final gas product. The experimental results showed an average recovery of CH4 of 95.7% for an average 55% feed composition, whereas the average purity in the final product was equal to 82.4%. The purity results were lower because of the N2 presence in the product stream (average 17.5%). After normalization with the help of the lab-scale binary results, the expected results assuming N2 absence would be 99.8% CH4 purity and 67% CH4 recovery. Finally, 3 different membrane configurations are compared in terms of their energy production, concluding to the efficiency of 2-stage configuration with recycling stream for the optimal combination of theoretical stage cut fractions.


Assuntos
Biocombustíveis , Dióxido de Carbono , Anaerobiose , Reatores Biológicos , Metano
2.
Chemosphere ; 299: 134224, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35339525

RESUMO

The present study evaluates the separation performance of a commercially available polymeric membrane, when employed for the upgrade of biogas to enrich CH4 from a simulated binary gas mixture. For this purpose, a laboratory-scale membrane set-up device has been designed and assembled, aiming to achieve the production of high purity biomethane (>95%) with simultaneous recycling and utilization of the (considered as) waste CO2 stream. The examined membrane is a polysulfone (PSF) hollow fiber (HF) one, applied in counter-current flow. The feed concentration of gases consisted between 55-70 vol% and 45-30 vol%, regarding CH4 and CO2 respectively, whereas the effect of retentate pressure was studied in the range between 0.7 and 1.5 bars. The experimental results reveal that the concentration of CH4 in the retentate stream can exceed the target value of 95%, when the applied pressure values are above the limit of 1 bar. Any increase in the feed pressure can lead also to higher CH4 purity on the retentate side, however the retentate mass flow decreases, leading to smaller recovery values of CH4. A significant increase in the CH4 purity is observed, when the CH4 recovery drops below 40%, suggesting the need for the application of multiple membrane modules, operating in series. Regarding the CO2 concentration in the permeate stream, its percentages range between 30 and 50%, which are not considered as sufficient to permit immediate reuse, whereas the need of extra membrane modules to improve the purity of gas streams is confirmed.


Assuntos
Biocombustíveis , Dióxido de Carbono , Dióxido de Carbono/análise , Gases , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA