Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(8): 3344-3351, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37027572

RESUMO

Fabrication of high quantum efficiency nanoscale device is challenging due to increased carrier loss at surface. Low dimensional materials such 0D quantum dots and 2D materials have been widely studied to mitigate the loss. Here, we demonstrate a strong photoluminescence enhancement from graphene/III-V quantum dot mixed-dimensional heterostructures. The distance between graphene and quantum dots in the 2D/0D hybrid structure determines the degree of radiative carrier recombination enhancement from 80% to 800% compared to the quantum dot only structure. Time-resolved photoluminescence decay also shows increased carrier lifetimes when the distance decreases from 50 to 10 nm. We propose that the optical enhancement is due to energy band bending and hole carrier transfer, which repair the imbalance of electron and hole carrier densities in quantum dots. This 2D graphene/0D quantum dot heterostructure shows promise for high performance nanoscale optoelectronic devices.

2.
ACS Appl Mater Interfaces ; 12(48): 54005-54011, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33207879

RESUMO

Effective high-capacity data management necessitates the use of ultrafast fiber lasers with mode-locking-based femtosecond pulse generation. We suggest a simple but highly efficient structure of a graphene saturable absorber in the form of a graphene/poly(methyl methacrylate) (PMMA)/graphene capacitor and demonstrate the generation of ultrashort pulses by passive mode-locking in a fiber ring laser cavity, with simultaneous electrical switching (on/off) of the mode-locking operation. The voltage applied to the capacitor shifts the Fermi level of the graphene layers, thereby controlling their nonlinear light absorption, which is directly correlated with mode-locking. The flexible PMMA layer used for graphene transfer also acts as a dielectric layer to realize a very simple but effective capacitor structure. By employing the graphene capacitor on the polished surface of a D-shaped fiber, we demonstrate the switching of the mode-locking operation reversibly from the femtosecond pulse regime to a continuous wave regime of the ring laser with an extinction ratio of 70.4 dB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA