RESUMO
In this study, we report a novel splice variant in the TRA2B gene identified in a patient presenting with seizures and neurodevelopmental delay. This paper represents the second investigation of pathogenic variants in the TRA2B gene in humans, reaffirming the conclusions of the initial study and underscoring the importance of this research. Comprehensive genetic testing, including whole genome sequencing, Sanger sequencing, and mRNA analysis, was performed on the proband and her parents. The proband harbored a de novo c.170+1G>A variant in the RS1 domain of Tra2ß, which was confirmed to be pathogenic through mRNA analysis, resulting in exon 2 deletion and a frameshift (p.Glu13Valfs*2). The clinical presentation of the patient was consistent with phenotypes described in one of the previous studies. These findings contribute to the dissemination and reinforcement of prior discoveries in the context of TRA2B-related syndrome and highlight the need for further investigation into the functional consequences and underlying pathogenic mechanisms associated with TRA2B mutations.
Assuntos
Mutação da Fase de Leitura , Malformações do Sistema Nervoso , Humanos , Feminino , Mutação , Éxons/genética , RNA Mensageiro/genética , Malformações do Sistema Nervoso/genética , Convulsões/genética , Fatores de Processamento de Serina-Arginina/genética , Proteínas do Tecido Nervoso/genéticaRESUMO
X-linked centronuclear myopathy is caused by pathogenic variants in the MTM1 gene, which encodes myotubularin, a phosphatidylinositol 3-phosphate (PI3P) phosphatase. This form of congenital myopathy predominantly affects males. This study presents a case of X-linked myotubular myopathy in a female carrier of a pathogenic c.1261-10A>G variant in the MTM1 gene.
Assuntos
Miopatias Congênitas Estruturais , Proteínas Tirosina Fosfatases não Receptoras , Feminino , Humanos , Masculino , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Proteínas Tirosina Fosfatases não Receptoras/genéticaRESUMO
The presence of complex alleles in the CFTR gene can lead to difficulties in diagnosing cystic fibrosis and cause resistance to therapy with CFTR modulators. Tezacaftor/ivacaftor therapy for 8 months in a patient with the initially established F508del/F508del genotype did not lead to an improvement in her condition-there was no change in spirometry and an increase in the patient's weight, while there was only a slight decrease in NaCl values, measured by a sweat test. The intestinal current measurements of the patient's rectal biopsy showed no positive dynamics in the rescue of CFTR function while taking tezacaftor/ivacaftor. The assumption that the patient had an additional mutation in the cis position was confirmed by sequencing the CFTR gene, and the complex allele [L467F;F508del] was identified. Based on the rescue of CFTR function by elexacaftor/tezacaftor/ivacaftor obtained using forskolin-induced swelling on intestinal organoids, the patient was prescribed therapy with this targeted drug. The use of elexacaftor/tezacaftor/ivacaftor for 7 months resulted in a significant improvement in the patient's clinical condition.
RESUMO
In the cohort of Russian patients with cystic fibrosis, the p.[Leu467Phe;Phe508del] complex allele (legacy name [L467F;F508del]) of the CFTR gene is understudied. In this research, we present the results of frequency evaluation of the [L467F;F508del] complex allele in the Russian Federation among patients with a F508del/F508del genotype, its effect on the clinical course of cystic fibrosis, the intestinal epithelium ionic channel function, and the effectiveness of target therapy. The frequency of the [L467F;F508del] complex allele among patients with homozygous F508del was determined with multiplex ligase-dependent probe amplification followed by polymerase chain reaction and fragment analysis. The function of ionic channels, including the residual CFTR function, and the effectiveness of CFTR modulators was analyzed using intestinal current measurements on rectal biopsy samples and the forskolin-induced swelling assay on organoids. The results showed that the F508del/[L467F;F508del] genotype is present in 8.2% of all Russian patients with F508del in a homozygous state. The clinical course of the disease in patients with the F508del/[L467F;F508del] genotype is severe and does not vary from the course in the cohort with homozygous F508del, although the CFTR channel function is significantly lower. For patients with the F508del/[L467F;F508del] genotype, we can recommend targeted therapy using a combined ivacaftor + tezacaftor + elexacaftor medication.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Alelos , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Colforsina/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Ligases/genética , Mutação , OrganoidesRESUMO
Bi-allelic pathogenic variations within POLR3A have been associated with a spectrum of hereditary disorders. Among these, a less frequently observed condition is Wiedemann-Rautenstrauch syndrome (WRS), also known as neonatal progeroid syndrome. This syndrome typically manifests neonatally and is characterized by growth retardation, evident generalized lipodystrophy with distinctively localized fat accumulations, sparse scalp hair, and atypical facial features. Our objective was to elucidate the underlying molecular mechanisms of Wiedemann-Rautenstrauch syndrome (WRS). In this study, we present a clinical case of a 7-year-old female patient diagnosed with WRS. Utilizing whole-exome sequencing (WES), we identified a novel missense variant c.3677T>C (p.Leu1226Pro) in the POLR3A gene (NM_007055.4) alongside two cis intronic variants c.1909+22G>A and c.3337-11T>C. Via the analysis of mRNA derived from fibroblasts, we reconfirmed the splicing-affecting nature of the c.3337-11T>C variant. Furthermore, our investigation led to the reclassification of the c.3677T>C (p.Leu1226Pro) variant as a likely pathogenic variant. Therefore, this is the first case demonstrating the molecular genetics of a patient with Wiedemann-Rautenstrauch syndrome from the Russian Federation. A limited number of clinical cases have been documented until this moment; therefore, broadening the linkage between phenotype and molecular changes in the POLR3A gene will significantly contribute to the comprehensive understanding of the molecular basis of POLR3A-related disorders.
Assuntos
Progéria , Recém-Nascido , Feminino , Humanos , Criança , Progéria/genética , Progéria/diagnóstico , Progéria/patologia , Retardo do Crescimento Fetal/patologia , Mutação , Federação Russa , RNA Polimerase III/genéticaRESUMO
The effective implementation of whole-exome sequencing- and whole-genome sequencing-based diagnostics in the management of children affected with genetic diseases and the rapid decrease in the cost of next-generation sequencing (NGS) enables the expansion of this method to newborn genetic screening programs. Such NGS-based screening greatly increases the number of diseases that can be detected compared to conventional newborn screening, as the latter is aimed at early detection of a limited number of inborn diseases. Moreover, genetic testing provides new possibilities for family members of the proband, as many variants responsible for adult-onset conditions are inherited from the parents. However, the idea of NGS-based screening in healthy children raises issues of medical and ethical integrity as well as technical questions, including interpretation of the observed variants. Pilot studies have shown that both parents and medical professionals have moved forward and are enthused about these new possibilities. However, either the number of participants or the number of genes studied in previous investigations thus far has been limited to a few hundred, restricting the scope of potential findings. Our current study (NCT05325749) includes 7,000 apparently healthy infants born at our center between February 2021 and May 2023, who were screened for pathogenic variants in 2,350 genes. Clinically significant variants associated with early-onset diseases that can be treated, prevented, or where symptoms can be alleviated with timely introduced symptomatic therapy, were observed in 0.9% of phenotypically normal infants, 2.1% of the screened newborns were found to carry variants associated with reduced penetrance or monogenic diseases of adult-onset and/or variable expressivity, and 0.3% had chromosomal abnormalities. Here, we report our results and address questions regarding the interpretation of variants in newborns who were presumed to be healthy.
Assuntos
Sequenciamento do Exoma , Testes Genéticos , Triagem Neonatal , Humanos , Recém-Nascido , Projetos Piloto , Triagem Neonatal/métodos , Feminino , Masculino , Testes Genéticos/métodos , Federação Russa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genéticaRESUMO
The intricate nature of complex alleles presents challenges in the classification of CFTR gene mutations, encompassing potential disease-causing, neutral, or treatment-modulating effects. Notably, the complex allele [E217G;G509D] remains absent from international databases, with its pathogenicity yet to be established. Assessing the functionality of apical membrane ion channels in intestinal epithelium employed the intestinal current measurements (ICM) method, using rectal biopsy material. The effectivity of CFTR-targeted therapy was evaluated using a model of intestinal organoids of a patient harboring the genotype F508del/[E217G;G509D]. ICM analysis revealed diminished chloride channel function. Remarkably, [E217G;G509D] presence within intestinal organoids correlated with heightened residual CFTR function. Employing CFTR modulators facilitated the restoration of the functional CFTR protein. This multifaceted study intertwines genetic investigations, functional analyses, and therapeutic interventions, shedding light on the intricate interplay of complex alleles within CFTR mutations. The results highlight the potential of targeted CFTR modulators to restore functional integrity, offering promise for advancing precision treatments in cystic fibrosis management.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Alelos , Canais de Cloreto , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , GenótipoRESUMO
Spastic paraplegia and psychomotor retardation with or without seizures (SPPRS, OMIM 616756) is a rare genetic disease caused by biallelic pathogenic variants in the HACE1 gene. Originally, these mutations have been reported to be implicated in tumor predisposition. Nonetheless, via whole exome sequencing in 2015, HACE1 mutations were suggested to be the cause of a new autosomal recessive neurodevelopmental disorder, which is characterized by spasticity, muscular hypotonia, and intellectual disability. To date, 14 HACE1 pathogenic variants have been described; these variants have a loss-of-function effect that leads to clinical presentations with variable severities. However, gross deletions in the HACE1 gene have not yet been mentioned as a cause of spastic paraplegia. Here, we report a clinical case involving a 2-year-old male presenting with spasticity, mainly affecting the lower limbs, and developmental delay. Exome sequencing, chromosomal microarray analysis, and mRNA analysis were used to identify the causative gene. We revealed that the clinical findings were due to previously undescribed HACE1 biallelic deletions. We identified the deletion of exon 7: c.(534+1_535-1)_(617+1_618-1)del (NM_020771.4) and the gross deletion in the 6q16.3 locus, which affected the entire HACE1 gene: g.105018931_105337494del, (GRCh37). A comprehensive diagnostic approach for the patients with originally homozygous mutations in HACE1 is required since false homozygosity results are possible. More than 80% of the described mutations were reported to be homozygous. Initial hemizygosity is hard to detect by quantitative methods, and this may challenge molecular diagnostic identification in patients with spastic paraplegia.