RESUMO
Amadori rearrangement products are stable sugar-amino acid conjugates that are formed nonenzymatically during preparation, dehydration, and storage of foods. Because Amadori compounds such as fructose-lysine (F-Lys), an abundant constituent in processed foods, shape the animal gut microbiome, it is important to understand bacterial utilization of these fructosamines. In bacteria, F-Lys is first phosphorylated, either during or after uptake to the cytoplasm, to form 6-phosphofructose-lysine (6-P-F-Lys). FrlB, a deglycase, then converts 6-P-F-Lys to L-lysine and glucose-6-phosphate. Here, to elucidate the catalytic mechanism of this deglycase, we first obtained a 1.8-Å crystal structure of Salmonella FrlB (without substrate) and then used computational approaches to dock 6-P-F-Lys on this structure. We also took advantage of the structural similarity between FrlB and the sugar isomerase domain of Escherichia coli glucosamine-6-phosphate synthase (GlmS), a related enzyme for which a structure with substrate has been determined. An overlay of FrlB-6-P-F-Lys on GlmS-fructose-6-phosphate structures revealed parallels in their active-site arrangement and guided our selection of seven putative active-site residues in FrlB for site-directed mutagenesis. Activity assays with eight recombinant single-substitution mutants identified residues postulated to serve as the general acid and general base in the FrlB active site and indicated unexpectedly significant contributions from their proximal residues. By exploiting native mass spectrometry (MS) coupled to surface-induced dissociation, we distinguished mutations that impaired substrate binding versus cleavage. As demonstrated with FrlB, an integrated approach involving x-ray crystallography, in silico approaches, biochemical assays, and native MS can synergistically aid structure-function and mechanistic studies of enzymes.
Assuntos
Aminoácidos , Lisina , Animais , Bactérias , Escherichia coli/genética , Açúcares , FrutoseRESUMO
Although salmonellosis, an infectious disease, is a significant global healthcare burden, there are no Salmonella-specific vaccines or therapeutics for humans. Motivated by our finding that FraB, a Salmonella deglycase responsible for fructose-asparagine catabolism, is a viable drug target, we initiated experimental and computational efforts to identify inhibitors of FraB. To this end, our recent high-throughput screening initiative yielded almost exclusively uncompetitive inhibitors of FraB. In parallel with this advance, we report here how a separate structural and computational biology investigation of FrlB, a FraB paralog, led to the serendipitous discovery that 2-deoxy-6-phosphogluconate is a competitive inhibitor of FraB (KI ~ 3 µM). However, this compound was ineffective in inhibiting the growth of Salmonella in a liquid culture. In addition to poor uptake, cellular metabolic transformations by a Salmonella dehydrogenase and different phosphatases likely undermined the efficacy of 2-deoxy-6-phosphogluconate in live-cell assays. These insights inform our ongoing efforts to synthesize non-hydrolyzable/-metabolizable analogs of 2-deoxy-6-phosphogluconate. We showcase our findings largely to (re)emphasize the role of serendipity and the importance of multi-pronged approaches in drug discovery.