Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Environ Microbiol ; 26(5): e16627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733112

RESUMO

Soil structure and aggregation are crucial for soil functionality, particularly under drought conditions. Saprobic soil fungi, known for their resilience in low moisture conditions, are recognized for their influence on soil aggregate dynamics. In this study, we explored the potential of fungal amendments to enhance soil aggregation and hydrological properties across different moisture regimes. We used a selection of 29 fungal isolates, recovered from soils treated under drought conditions and varying in colony density and growth rate, for single-strain inoculation into sterilized soil microcosms under either low or high moisture (≤-0.96 and -0.03 MPa, respectively). After 8 weeks, we assessed soil aggregate formation and stability, along with soil properties such as soil water content, water hydrophobicity, sorptivity, total fungal biomass and water potential. Our findings indicate that fungal inoculation altered soil hydrological properties and improved soil aggregation, with effects varying based on the fungal strains and soil moisture levels. We found a positive correlation between fungal biomass and enhanced soil aggregate formation and stabilization, achieved by connecting soil particles via hyphae and modifying soil aggregate sorptivity. The improvement in soil water potential was observed only when the initial moisture level was not critical for fungal activity. Overall, our results highlight the potential of using fungal inoculation to improve the structure of agricultural soil under drought conditions, thereby introducing new possibilities for soil management in the context of climate change.


Assuntos
Fungos , Microbiologia do Solo , Solo , Água , Solo/química , Fungos/crescimento & desenvolvimento , Água/química , Biomassa , Secas
2.
J Environ Manage ; 364: 121379, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870787

RESUMO

Chemical nutrient amendment by human activities can lead to environmental impacts contributing to global biodiversity loss. However, the comprehensive understanding of how below- and above-ground biodiversity shifts under fertilization regimes in natural ecosystems remains elusive. Here, we conducted a seven-year field experiment (2011-2017) and examined the effects of different fertilization on plant biodiversity and soil belowground (prokaryotic and eukaryotic) communities in the alpine meadow of the Tibetan Plateau, based on data collected in 2017. Our results indicate that nitrogen addition promoted total plant biomass but reduced the plant species richness. Conversely, phosphorus enrichment did not promote plant biomass and exhibited an unimodal pattern with plant richness. In the belowground realm, distinct responses of soil prokaryotic and eukaryotic communities were observed under fertilizer application. Specifically, soil prokaryotic diversity decreased with nitrogen enrichment, correlating with shifts in soil pH. Similarly, soil eukaryotic diversity decreased with increased phosphorous inputs, aligning with the equilibrium between soil available and total phosphorus. We also established connections between these soil organism communities with above-ground plant richness and biomass. Overall, our study contributes to a better understanding of the sustainable impacts of human-induced nutrient enrichment on the natural environment. Future research should delve deeper into the long-term effects of fertilization on soil health and ecosystem functioning, aiming to achieve a balance between agricultural productivity and environmental conservation.


Assuntos
Biodiversidade , Fertilizantes , Solo , Tibet , Solo/química , Ecossistema , Fósforo/análise , Microbiologia do Solo , Biomassa , Nitrogênio , Agricultura
3.
Environ Microbiol ; 25(12): 3623-3629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37849426

RESUMO

The assembly of bacterial communities in the rhizosphere is well-documented and plays a crucial role in supporting plant performance. However, we have limited knowledge of how plant rhizosphere determines the assembly of protistan predators and whether the potential associations between protistan predators and bacterial communities shift due to rhizosphere selection. To address this, we examined bacterial and protistan taxa from 443 agricultural soil samples including bulk and rhizosphere soils. Our results presented distinct patterns of bacteria and protistan predators in rhizosphere microbiome assembly. Community assembly of protistan predators was determined by a stochastic process in the rhizosphere and the diversity of protistan predators was reduced in the rhizosphere compared to bulk soils, these may be attributed to the indirect impacts from the altered bacterial communities that showed deterministic process assembly in the rhizosphere. Interestingly, we observed that the plant rhizosphere facilitates more close interrelationships between protistan predators and bacterial communities, which might promote a healthy rhizosphere microbial community for plant growth. Overall, our findings indicate that the potential predator-prey relationships within the microbiome, mediated by plant rhizosphere, might contribute to plant performance in agricultural ecosystems.


Assuntos
Microbiota , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética , Solo , Plantas
4.
New Phytol ; 238(3): 1198-1214, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740577

RESUMO

Host-associated fungi can help protect plants from pathogens, and empirical evidence suggests that such microorganisms can be manipulated by introducing probiotic to increase disease suppression. However, we still generally lack the mechanistic knowledge of what determines the success of probiotic application, hampering the development of reliable disease suppression strategies. We conducted a three-season consecutive microcosm experiment in which we amended banana Fusarium wilt disease-conducive soil with Trichoderma-amended biofertilizer or lacking this inoculum. High-throughput sequencing was complemented with cultivation-based methods to follow changes in fungal microbiome and explore potential links with plant health. Trichoderma application increased banana biomass by decreasing disease incidence by up to 72%, and this effect was attributed to changes in fungal microbiome, including the reduction in Fusarium oxysporum density and enrichment of pathogen-suppressing fungi (Humicola). These changes were accompanied by an expansion in microbial carbon resource utilization potential, features that contribute to disease suppression. We further demonstrated the disease suppression actions of Trichoderma-Humicola consortia, and results suggest niche overlap with pathogen and induction of plant systemic resistance may be mechanisms driving the observed biocontrol effects. Together, we demonstrate that fungal inoculants can modify the composition and functioning of the resident soil fungal microbiome to suppress soilborne disease.


Assuntos
Fusarium , Musa , Trichoderma , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Microbiologia do Solo , Solo , Musa/microbiologia
5.
Glob Chang Biol ; 29(5): 1314-1327, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511762

RESUMO

An alarming and increasing deforestation rate threatens Amazon tropical ecosystems and subsequent degradation due to frequent fires. Agroforestry systems (AFS) may offer a sustainable alternative, reportedly mimicking the plant-soil interactions of the natural mature forest (MF). However, the role of microbial community in tropical AFS remains largely unknown. This knowledge is crucial for evaluating the sustainability of AFS and practices given the key role of microbes in the aboveground-belowground interactions. The current study, by comparing different AFS and successions of secondary and MFs, showed that AFS fostered distinct groups of bacterial community, diverging from the MFs, likely a result of management practices while secondary forests converged to the same soil microbiome found in the MF, by favoring the same groups of fungi. Model simulations reveal that AFS would require profound changes in aboveground biomass and in soil factors to reach the same microbiome found in MFs. In summary, AFS practices did not result in ecosystems mimicking natural forest plant-soil interactions but rather reshaped the ecosystem to a completely different relation between aboveground biomass, soil abiotic properties, and the soil microbiome.


Assuntos
Ecossistema , Microbiota , Florestas , Solo , Fungos , Bactérias , Microbiologia do Solo
6.
Environ Microbiol ; 24(12): 5680-5689, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36053873

RESUMO

Microbial interactions within resident communities are a major determinant of resistance to pathogen invasion. Yet, interactions vary with environmental conditions, raising the question of how community composition and environments interactively shape invasion resistance. Here, we use resource availability (RA) as a model parameter altering the resistance of model bacterial communities to invasion by the plant pathogenic bacterium Ralstonia solanacearum. We found that at high RA, interactions between resident bacterial species were mainly driven by the direct antagonism, in terms of the means of invader inhibition. Consequently, the competitive resident communities with a higher production of antibacterial were invaded to a lesser degree than facilitative communities. At low RA, bacteria produced little direct antagonist potential, but facilitative communities reached a relatively higher community productivity, which showed higher resistance to pathogen invasion than competitive communities with lower productivities. This framework may lay the basis to understand complex microbial interactions and biological invasion as modulated by the dynamic changes of environmental resource availability.


Assuntos
Bactérias , Ralstonia solanacearum , Bactérias/genética , Plantas , Interações Microbianas
7.
Environ Microbiol ; 24(8): 3625-3639, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35229433

RESUMO

Dead wood quantity and quality is important for forest biodiversity, by determining wood-inhabiting fungal assemblages. We therefore evaluated how fungal communities were regulated by stem traits and compartments (i.e. bark, outer- and inner wood) of 14 common temperate tree species. Fresh logs were incubated in a common garden experiment in a forest site in the Netherlands. After 1 and 4 years of decay, the fungal composition of different compartments was assessed using Internal Transcribed Spacer amplicon sequencing. We found that fungal alpha diversity differed significantly across tree species and stem compartments, with bark showing significantly higher fungal diversity than wood. Gymnosperms and Angiosperms hold different fungal communities, and distinct fungi were found between inner wood and other compartments. Stem traits showed significant afterlife effects on fungal communities; traits associated with accessibility (e.g. conduit diameter), stem chemistry (e.g. C, N, lignin) and physical defence (e.g. density) were important factors shaping fungal community structure in decaying stems. Overall, stem traits vary substantially across stem compartments and tree species, thus regulating fungal communities and the long-term carbon dynamics of dead trees.


Assuntos
Micobioma , Árvores , Biodiversidade , Florestas , Fungos/genética , Micobioma/genética , Árvores/microbiologia , Madeira/microbiologia
8.
Proc Biol Sci ; 288(1960): 20211396, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34641724

RESUMO

Plant growth depends on a range of functions provided by their associated rhizosphere microbiome, including nutrient mineralization, hormone co-regulation and pathogen suppression. Improving the ability of plant-associated microbiomes to deliver these functions is thus important for developing robust and sustainable crop production. However, it is yet unclear how beneficial effects of probiotic microbial inoculants can be optimized and how their effects are mediated. Here, we sought to enhance tomato plant growth by targeted introduction of probiotic bacterial consortia consisting of up to eight plant-associated Pseudomonas strains. We found that the effect of probiotic consortium inoculation was richness-dependent: consortia that contained more Pseudomonas strains reached higher densities in the tomato rhizosphere and had clearer beneficial effects on multiple plant growth characteristics. Crucially, these effects were best explained by changes in the resident community diversity, composition and increase in the relative abundance of initially rare taxa, instead of introduction of plant-beneficial traits into the existing community along with probiotic consortia. Together, our results suggest that beneficial effects of microbial introductions can be driven indirectly through effects on the diversity and composition of the resident plant rhizosphere microbiome.


Assuntos
Microbiota , Probióticos , Bactérias , Raízes de Plantas , Rizosfera , Microbiologia do Solo
9.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33637572

RESUMO

To maintain the beneficial effects of microbial inoculants on plants and soil, repeated inoculation represents a promising option. Until now, the impacts of one-off inoculation on the native microbiome have been explored, but it remains unclear how long and to what extent the periodic inoculations would affect the succession of the resident microbiome in bulk soil. Here, we examined the dynamic responses of plant growth, soil functions, and the resident bacterial community in the bulk soil to periodic inoculations of phosphate-solubilizing and N2-fixing bacteria alone or in combination. Compared to single-strain inoculation, coinoculation better stimulated plant growth and soil nutrients. However, the benefits from inoculants did not increase with repeated inoculations and were not maintained after transplantation to a different site. In response to microbial inoculants, three patterns of shifts in the bacterial composition were observed: fold increase, fold decrease, and resilience. The periodic inoculations impacted the succession course of resident bacterial communities in bulk soil, mainly driven by changes in soil pH and nitrate, resulting in the development of three main cluster types throughout the investigation. The single and mixed inoculants transiently modulated the variation in the resident community in association with soil pH and the C/N ratio, but finally, the community established and showed resilience to subsequent inoculations. Consequently, the necessity of repeated inoculations should be reconsidered, and while the different microbial inoculants showed distinct impacts on resident microbiome succession, the communities ultimately exhibited resilience.IMPORTANCE Introducing beneficial microbes to the plant-soil system is an environmentally friendly approach to improve the crop yield and soil environment. Numerous studies have attempted to reveal the impacts of inoculation on the rhizosphere microbiome. However, little is known about the effectiveness of periodic inoculations on soil functioning. In addition, the long-term impact of repeated inoculations on the native community remains unclear. Here, we track the succession traits of the resident microbiome in the bulk soil across a growing season and identify the taxon clusters that respond differently to periodic inoculation. Crucially, we compare the development of the resident community composition with and without inoculation, thus providing new insight into the interactions between resident microbes and intruders. Finally, we conclude that initial inoculation plays a more important role in influencing the whole system, and the native microbial community exhibits traits of resilience, but no resistance, to the subsequent inoculations.


Assuntos
Inoculantes Agrícolas , Juglandaceae/crescimento & desenvolvimento , Microbiota , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S , Solo/química
10.
New Phytol ; 229(2): 1067-1077, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32772380

RESUMO

Breeding better crops is a cornerstone of global food security. While efforts in plant genetic improvement show promise, it is increasingly becoming apparent that the plant phenotype should be treated as a function of the holobiont, in which plant and microbial traits are deeply intertwined. Using a minimal holobiont model, we track ethylene production and plant nutritional value in response to alterations in plant ethylene synthesis (KO mutation in ETO1), which induces 1-aminocyclopropane-1-carboxylic acid (ACC) synthase 5 (ACS5), or microbial degradation of ACC (KO mutation in microbial acdS), preventing the breakdown of the plant ACC pool, the product of ACS5. We demonstrate that similar plant phenotypes can be generated by either specific mutations of plant-associated microbes or alterations in the plant genome. Specifically, we could equally increase plant nutritional value by either altering the plant ethylene synthesis gene ETO1, or the microbial gene acdS. Both mutations yielded a similar plant phenotype with increased ethylene production and higher shoot micronutrient concentrations. Restoring bacterial AcdS enzyme activity also rescued the plant wild-t8yp phenotype in an eto1 background. Plant and bacterial genes build an integrated plant-microbe regulatory network amenable to genetic improvement from both the plant and microbial sides.


Assuntos
Arabidopsis , Arabidopsis/genética , Etilenos , Genes de Plantas , Fenótipo , Melhoramento Vegetal
11.
Plant Cell Environ ; 44(2): 613-628, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33103781

RESUMO

Although interactions between plants and microbes at the plant-soil interface are known to be important for plant nutrient acquisition, relatively little is known about how root exudates contribute to nutrient exchange over the course of plant development. In this study, root exudates from slow- and fast-growing stages of Arabidopsis thaliana plants were collected, chemically analysed and then applied to a sandy nutrient-depleted soil. We then tracked the impacts of these exudates on soil bacterial communities, soil nutrients (ammonium, nitrate, available phosphorus and potassium) and plant growth. Both pools of exudates shifted bacterial community structure. GeoChip analyses revealed increases in the functional gene potential of both exudate-treated soils, with similar responses observed for slow-growing and fast-growing plant exudate treatments. The fast-growing stage root exudates induced higher nutrient mineralization and enhanced plant growth as compared to treatments with slow-growing stage exudates and the control. These results suggest that plants may adjust their exudation patterns over the course of their different growth phases to help tailor microbial recruitment to meet increased nutrient demands during periods demanding faster growth.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Exsudatos de Plantas/química , Microbiologia do Solo , Solo/normas , Retroalimentação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia
12.
Glob Chang Biol ; 27(7): 1387-1407, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33274502

RESUMO

Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.


Assuntos
Ecossistema , Ciência Ambiental , Biodiversidade , Ecologia , Solo
13.
Environ Microbiol ; 22(12): 5005-5018, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32458448

RESUMO

The rhizosphere microbiome is essential for plant growth and health, and numerous studies have attempted to link microbiome functionality to species and trait composition. However, to date little is known about the actual ecological processes shaping community composition, complicating attempts to steer microbiome functionality. Here, we assess the development of microbial life history and community-level species interaction patterns that emerge during plant development. We use microbial phenotyping to experimentally test the development of niche complementarity and life history traits linked to microbiome performance. We show that the rhizosphere microbiome assembles from pioneer assemblages of species with random resource overlap into high-density, functionally complementary climax communities at later stages. During plant growth, fast-growing species were further replaced by antagonistic and stress-tolerant ones. Using synthetic consortia isolated from different plant growth stages, we demonstrate that the high functional diversity of 'climax' microbiomes leads to a better resistance to bacterial pathogen invasion. By demonstrating that different life-history strategies prevail at different plant growth stages and that community-level processes may supersede the importance of single species, we provide a new toolbox to understand microbiome assembly and steer its functionality at a community level.


Assuntos
Bactérias/classificação , Desenvolvimento Vegetal/fisiologia , Raízes de Plantas/microbiologia , Rizosfera , Solanum lycopersicum/crescimento & desenvolvimento , Bactérias/genética , Bactérias/isolamento & purificação , Solanum lycopersicum/microbiologia , Microbiota/genética , Microbiologia do Solo
14.
Glob Chang Biol ; 25(4): 1358-1367, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30638293

RESUMO

Climate change will have large consequences for flooding frequencies in freshwater systems. In interaction with anthropogenic activities (flow regulation, channel restoration and catchment land-use) this will both increase flooding and drought across the world. Like in many other ecosystems facing changed environmental conditions, it remains difficult to predict the rate and trajectory of vegetation responses to changed conditions. Given that critical ecosystem services (e.g. bank stabilization, carbon subsidies to aquatic communities or water purification) depend on riparian vegetation composition, it is important to understand how and how fast riparian vegetation responds to changing flooding regimes. We studied vegetation changes over 19 growing seasons in turfs that were transplanted in a full-factorial design between three riparian elevations with different flooding frequencies. We found that (a) some transplanted communities may have developed into an alternative stable state and were still different from the target community, and (b) pathways of vegetation change were highly directional but alternative trajectories did occur, (c) changes were rather linear but faster when flooding frequencies increased than when they decreased, and (d) we observed fastest changes in turfs when proxies for mortality and colonization were highest. These results provide rare examples of alternative transient trajectories and stable states under field conditions, which is an important step towards understanding their drivers and their frequency in a changing world.

15.
Proc Biol Sci ; 285(1893): 20182035, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30963908

RESUMO

Diversity-invasion resistance relationships are often variable and sensitive to environmental conditions such as resource availability. Resource stoichiometry, the relative concentration of different elements in the environment, has been shown to have strong effects on the physiology and interactions between different species. Yet, its role for diversity-invasion resistance relationships is still poorly understood. Here, we explored how the ratio of nitrogen (N) and phosphorus affects the productivity and invasion resistance of constructed microbial communities by a plant pathogenic bacterium, Ralstonia solanacearum. We found that resource stoichiometry and species identity effects affected the invasion resistance of communities. Both high N concentration and resident community diversity constrained invasions, and two resident species, in particular, had strong negative effects on the relative density of the invader and the resident community productivity. While resource stoichiometry did not affect the mean productivity of the resident community, it favoured the growth of two species that strongly constrained invasions turning the slope of productivity-invasion resistance relationship more negative. Together our findings suggest that alterations in resource stoichiometry can change the community resistance to invasions by having disproportionate effects on species growth, potentially explaining changes in microbial community composition under eutrophication.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microbiota/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Ralstonia solanacearum/fisiologia , Bactérias/classificação , Espécies Introduzidas , Dinâmica Populacional
16.
Environ Sci Technol ; 52(15): 8745-8755, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29949713

RESUMO

Material flow analysis shows that soil is a key repository for silver (Ag) from (nano)silver-functionalized consumer products, but the potential effects of Ag toxicity, via Ag+ release, on soil microbial communities and their ecosystem services remains largely unknown. We examined the responses of multiple microbial biomarkers to increasing Ag+ doses (nine concentrations, 0-2000 mg kg-1) in nine different soils representing a wide range of soil properties. Analyses included substrate-induced microbial respiration, nine different soil enzyme activities, and quantification of bacterial 16S-rRNA (SSU) and fungal intergenic spacer (ITS) copies. The resulting half-maximal effective concentrations (EC50) for Ag ranged from ∼1 to >500 mg kg -1 and showed soil-specific responses, including some hormesis-type responses. Carbon cycle-associated enzyme activities (e.g., cellobiohydrolase, xylosidase, and α/ß-glucosidase) responded similarly to Ag. Sulfatase and leucine-aminopeptidase activities (linked to the sulfur and nitrogen cycles) were the most sensitive to Ag. Total organic carbon, and to a lesser extent pH, were identified as potentially useful response predictors, but only for some biomarkers; this reflects the complexity of soil Ag chemistry. Our results show Ag toxicity is highly dependent on soil characteristics and the specific microbial parameter under investigation, but end point redundancies also indicated that representative parameters for key microbial functions can be identified for risk assessment purposes. Sulfatase activity may be an important Ag toxicity biomarker; its response was highly sensitive and not correlated with that of other biomarkers.


Assuntos
Prata , Solo , Biomarcadores , Ecossistema , Microbiologia do Solo
17.
Environ Microbiol ; 19(8): 2984-2991, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28229529

RESUMO

Community diversity affects the survival of newly introduced species via resource competition. Competitive interactions can be modulated by resource availability and we hypothesized that this may alter biodiversity-invasion relationships. To study this, we assessed the growth of a bacterial invader, Ralstonia solanacearum, when introduced into communities comprised of one to five closely related resident species under different resource concentrations. The invader growth was then examined as a function of resident community richness, species composition and resource availability. We found that the relative density of the invader was reduced by increasing resident community richness and resource availability. Mechanistically, this could be explained by changes in the competitive interactions between the resident species and the invader along the resource availability gradient. At low resource availability, resident species with a high catabolic similarity with the invader efficiently reduced the invader relative density, while at high resource availability, fast-growing resident species became more important for the invader suppression. These results indicate that the relative importance of different resident community species can change dynamically along to resource availability gradient. Diverse communities could be thus more robust to invasions by providing a set of significant species that can take suppressive roles across different environments.


Assuntos
Espécies Introduzidas , Consórcios Microbianos/fisiologia , Ralstonia solanacearum/crescimento & desenvolvimento , Ralstonia solanacearum/metabolismo , Biodiversidade , Ecossistema
18.
Mol Ecol ; 26(15): 4085-4098, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28489329

RESUMO

Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se.


Assuntos
Biodiversidade , Ecossistema , Plantas/classificação , Microbiologia do Solo , Archaea/classificação , Bactérias/classificação , Fungos/classificação , Alemanha , Micorrizas/classificação
20.
ScientificWorldJournal ; 2014: 216071, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177716

RESUMO

Land use change alters the structure and composition of microbial communities. However, the links between environmental factors and microbial functions are not well understood. Here we interrogated the functional structure of soil microbial communities across different land uses. In a multivariate regression tree analysis of soil physicochemical properties and genes detected by functional microarrays, the main factor that explained the different microbial community functional structures was C : N ratio. C : N ratio showed a significant positive correlation with clay and soil pH. Fields with low C : N ratio had an overrepresentation of genes for carbon degradation, carbon fixation, metal reductase, and organic remediation categories, while fields with high C : N ratio had an overrepresentation of genes encoding dissimilatory sulfate reductase, methane oxidation, nitrification, and nitrogen fixation. The most abundant genes related to carbon degradation comprised bacterial and fungal cellulases; bacterial and fungal chitinases; fungal laccases; and bacterial, fungal, and oomycete polygalacturonases. The high number of genes related to organic remediation was probably driven by high phosphate content, while the high number of genes for nitrification was probably explained by high total nitrogen content. The functional gene diversity found in different soils did not group the sites accordingly to land management. Rather, the soil factors, C : N ratio, phosphate, and total N, were the main factors driving the differences in functional genes across the fields examined.


Assuntos
Microbiota , Microbiologia do Solo , Solo/química , Bactérias/enzimologia , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/análise , Celulase/genética , Celulase/metabolismo , Quitinases/genética , Quitinases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Fungos/genética , Fungos/isolamento & purificação , Concentração de Íons de Hidrogênio , Lacase/genética , Lacase/metabolismo , Nitrogênio/análise , Fosfatos/análise , Poligalacturonase/genética , Poligalacturonase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA