Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611710

RESUMO

A series of optically pure aziridine phosphines and their corresponding phosphine oxides were synthesized through established chemical methodologies. The compounds were systematically investigated for their biological properties. Notably, all synthesized compounds demonstrated moderate antibacterial activity only against the reference strain of Staphylococcus aureus. However, compounds 5 and 7 exhibited noteworthy cell viability inhibition of human cervical epithelioid carcinoma HeLa cells and endometrial adenocarcinoma Ishikawa cells. Further studies of these compounds revealed additional biological effects, including disruption of the cell membrane in high concentrations, cell cycle arrest in the S phase, and the induction of reactive oxygen species (ROS). Comparative analysis of the two classes of chiral organophosphorus derivatives of aziridines indicated that chiral phosphine oxides displayed significantly higher biological activity. Consequently, these findings suggest that chiral phosphine oxides may be potential candidates for the development of anticancer drugs. In light of the significant interest in preparations whose structure is based on a three-membered aziridine ring in terms of potential anticancer therapy, this research fits into the current research trend and should constitute a valuable addition to the current state of knowledge and the existing library of aziridine derivatives with anticancer properties.


Assuntos
Aziridinas , Fosfinas , Humanos , Células HeLa , Aziridinas/farmacologia , Óxidos
2.
Cancer Immunol Immunother ; 72(5): 1075-1087, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36319717

RESUMO

Immunotherapy has revolutionized cancer treatment in recent years. Although currently approved checkpoint inhibitors (CPIs) yield remarkable anti-tumoral responses in several cancer types, a substantial proportion of patients do not benefit from such therapies. Local activation of innate immune signaling pathways is a promising approach to overcome the immunosuppressive tumor microenvironment, induce anti-tumor immunity, and improve the efficacy of CPI therapies. Here, we assessed the mode of action and efficacy of the RNA-based innate immune stimulator CV8102 for local immunotherapy in preclinical models. Intratumoral (i.t.) administration of CV8102 activated innate immune responses in the tumor microenvironment and draining lymph nodes, resulting in a dose-dependent anti-tumoral response. Combining i.t. CV8102 with systemic anti-programmed death protein 1 (PD-1) treatment further enhanced anti-tumoral responses, inducing tumor infiltration and activation of CD8+ T cells. The resulting memory response prevented tumor growth in rechallenged animals and impaired the growth of non-injected distal tumors. Therefore, i.t. CV8102 delivery is a promising approach for local cancer immunotherapy, especially in combination with CPIs. Clinical testing of CV8102 is ongoing (NCT03291002).


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Neoplasias/terapia , Fatores Imunológicos , Imunoterapia/métodos , Microambiente Tumoral
3.
J Enzyme Inhib Med Chem ; 38(1): 2171028, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36715272

RESUMO

The synthesis of carborane-1,8-naphthalimide conjugates and evaluation of their DNA-binding ability and anticancer activity were performed. A series of 4-carboranyl-3-nitro-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, were synthesised via amidation and reductive amination reactions, and their calf thymus DNA (ct-DNA)-binding properties were investigated using circular dichroism, UV-vis spectroscopy, and thermal denaturation. Results showed that conjugates 34-37 interacted very strongly with ct-DNA (ΔTm = 10.00-13.00 °C), indicating their ability to intercalate with DNA, but did not inhibit the activity of topoisomerase II. The conjugates inhibited the cell growth of the HepG2 cancer cell line in vitro. The same compounds caused the G2M phase arrest. Cell lines treated with these conjugates showed an increase in reactive oxygen species, glutathione, and Fe2+ levels, lipid peroxidation, and mitochondrial membrane potential relative to controls, indicating the involvement of ferroptosis. Furthermore, these conjugates caused lysosomal membrane permeabilization in HepG2 cells but not in MRC-5 cells.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias , Substâncias Intercalantes , Antineoplásicos/química , Naftalimidas , Linhagem Celular , DNA/química , Lisossomos/metabolismo , Linhagem Celular Tumoral
4.
Bioorg Chem ; 125: 105847, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35526436

RESUMO

The knowledge pertaining to the chemistry and biological activity of glycol nucleic acid (GNA) components, like nucleosides and nucleotides, is still very limited. Herein we report on the preparation of the uracil nucleoside (1) and nucleotide ester GNA (2). The compounds are functionalised with a luminescent phenanthrenyl group. In DMSO, 1 and 2 are brightly fluorescent, with emission maxima at 390 nm, nanosecond decay times (0.6 and 0.75 ns, respectively), and quantum yields of ca. 0.2. In the solid phase, they show excimeric emission, with maxima at 495 nm (1) and 432 nm (2), and decay times of 3.7 ns (1) and 2.9 ns (2). The anticancer activity of the GNA components, as well as gemcitabine hydrochloride, used as a reference drug, were examined in vitro against human cancer HeLa and Ishikawa cells, as well as against normal L929 cells, using a battery of biochemical assays. Furthermore, biodistribution imaging studies were carried out in HeLa cells, with luminescence confocal microscopy, which showed that the compounds localized mainly in the lipophilic cellular compartments. Nucleoside (1) and nucleotide ester (2) features two different anticancer activity profiles. At 24 h of treatment, the nucleoside acts mainly as a toxin and induces necrosis in HeLa cells, whereas the nucleotide ester exhibits pro-apoptotic activity. At longer treatment times (72 h), the nucleoside and the reference, gemcitabine hydrochloride, featured almost identical signs of anticancer activity, such as S-phase cell cycle arrest, proliferation inhibition, and apoptosis induction. In view of this data, one can hypothesize that despite the structural differences, the newly obtained phenanthrenyl GNA nucleoside (1) and gemcitabine may share a common mechanism of anticancer activity in HeLa cancer cells. The GNA components were also examined as antiplasmodial agents against Plasmodium falciparum, in vitro. Nucleoside (1) was found to be more potent than nucleotide (2), displaying activity in the low micromolar range. Furthermore, both phenanthrene derivatives were found to display resistance indices at least 9-fold lower than chloroquine diphosphate (CQDP).


Assuntos
Ácidos Nucleicos , Ésteres , Glicóis/química , Células HeLa , Humanos , Ácidos Nucleicos/química , Nucleotídeos , Distribuição Tecidual
5.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232870

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) are inhibitors of cyclooxygenase enzyme (COX) and were found to have positive effects in reducing the risk of developing gynecological cancers. However, long-term administration of NSAIDs carries the risk of various side effects, including those in the digestive and circulatory systems. Therefore, there is a constant need to develop new NSAID derivatives. In this work, we investigated rhenium NSAIDs, comparing their effects on endometrial cancer cells with original NSAIDs, demonstrating the high activity of aspirin and indomethacin derivatives. The cytotoxic activity of rhenium derivatives against the Ishikawa and HEC-1A cancer cell lines was higher than that of the original NSAIDs. The IC50 after 24-h incubation of Ishikawa and HEC-1A were 188.06 µM and 394.06 µM for rhenium aspirin and 228.6 µM and 1459.3 µM for rhenium indomethacin, respectively. At the same time, IC50 of aspirin and indomethacin were 10,024.42 µM and 3295.3 µM for Ishikawa, and 27,255.8 µM and 5489.3 µM for HEC-1A, respectively. Moreover, these derivatives were found to inhibit the proliferation of both cell lines in a time- and state-dependent manner. The Ishikawa cell proliferation was strongly inhibited by rhenium aspirin and rhenium indomethacin after 72-h incubation (*** = p < 0.001), while the HEC-1A proliferation was inhibited by the same agents already after 24-h incubation (*** = p < 0.001). Furthermore, the ROS level in the mitochondria of the tested cells generated in the presence of rhenium derivatives was higher than the original NSAIDs. That was associated with rhenium indomethacin exclusively, which had a significant effect (*** = p < 0.001) on both Ishikawa and HEC-1A cancer cells. Rhenium aspirin had a significant effect (*** = p < 0.001) on the mitochondrial ROS level of Ishikawa cells only. Overall, the research revealed a high potential of the rhenium derivatives of aspirin and indomethacin against endometrial cancer cells compared with the original NSAIDs.


Assuntos
Neoplasias do Endométrio , Rênio , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Aspirina/farmacologia , Aspirina/uso terapêutico , Linhagem Celular Tumoral , Ciclo-Oxigenase 2 , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo , Feminino , Humanos , Indometacina/farmacologia , Indometacina/uso terapêutico , Espécies Reativas de Oxigênio , Rênio/farmacologia
6.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562989

RESUMO

In the present study, we continue our work related to the synthesis of 1,8-naphthalimide and carborane conjugates and the investigation of their anticancer activity and DNA-binding ability. For this purpose, a series of 4-carboranyl-1,8-naphthalimide derivatives, mitonafide, and pinafide analogs were synthesized using click chemistry, reductive amination, amidation, and Mitsunobu reactions. The calf thymus DNA (ct-DNA)-binding properties of the synthesized compounds were investigated by circular dichroism (CD), UV-vis spectroscopy, and thermal denaturation experiments. Conjugates 54-61 interacted very strongly with ct-DNA (∆Tm = 7.67-12.33 °C), suggesting their intercalation with DNA. They were also investigated for their in vitro effects on cytotoxicity, cell migration, cell death, cell cycle, and production of reactive oxygen species (ROS) in a HepG2 cancer cell line as well as inhibition of topoisomerase IIα activity (Topo II). The cytotoxicity of these eight conjugates was in the range of 3.12-30.87 µM, with the lowest IC50 value determined for compound 57. The analyses showed that most of the conjugates could induce cell cycle arrest in the G0/G1 phase, inhibit cell migration, and promote apoptosis. Two conjugates, namely 60 and 61, induced ROS production, which was proven by the increased level of 2'-deoxy-8-oxoguanosine in DNA. They were specifically located in lysosomes, and because of their excellent fluorescent properties, they could be easily detected within the cells. They were also found to be weak Topo II inhibitors.


Assuntos
Antineoplásicos , Substâncias Intercalantes , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Substâncias Intercalantes/química , Estrutura Molecular , Naftalimidas/química , Espécies Reativas de Oxigênio/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia
7.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918623

RESUMO

Compounds targeting bacterial topoisomerases are of interest for the development of antibacterial agents. Our previous studies culminated in the synthesis and characterization of small-molecular weight thiosemicarbazides as the initial prototypes of a novel class of gyrase and topoisomerase IV inhibitors. To expand these findings with further details on the mode of action of the most potent compounds, enzymatic studies combined with a molecular docking approach were carried out, the results of which are presented herein. The biochemical assay for 1-(indol-2-oyl)-4-(4-nitrophenyl) thiosemicarbazide (4) and 4-benzoyl-1-(indol-2-oyl) thiosemicarbazide (7), showing strong inhibitory activity against Staphylococcus aureus topoisomerase IV, confirmed that these compounds reduce the ability of the ParE subunit to hydrolyze ATP rather than act by stabilizing the cleavage complex. Compound 7 showed better antibacterial activity than compound 4 against clinical strains of S. aureus and representatives of the Mycobacterium genus. In vivo studies using time-lapse microfluidic microscopy, which allowed for the monitoring of fluorescently labelled replisomes, revealed that compound 7 caused an extension of the replication process duration in Mycobacterium smegmatis, as well as the growth arrest of bacterial cells. Despite some similarities to the mechanism of action of novobiocin, these compounds show additional, unique properties, and can thus be considered a novel group of inhibitors of the ATPase activity of bacterial type IIA topoisomerases.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Semicarbazidas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Antibacterianos/química , Sítios de Ligação , DNA Girase/química , Inibidores Enzimáticos/química , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Semicarbazidas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/farmacologia
8.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803403

RESUMO

We synthesized a series of novel 3-carboranyl-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, using click chemistry, reductive amination and amidation reactions and investigated their in vitro effects on cytotoxicity, cell death, cell cycle, and the production of reactive oxygen species in a HepG2 cancer cell line. The analyses showed that modified naphthalic anhydrides and naphthalimides bearing ortho- or meta-carboranes exhibited diversified activity. Naphthalimides were more cytotoxic than naphthalic anhydrides, with the highest IC50 value determined for compound 9 (3.10 µM). These compounds were capable of inducing cell cycle arrest at G0/G1 or G2M phase and promoting apoptosis, autophagy or ferroptosis. The most promising conjugate 35 caused strong apoptosis and induced ROS production, which was proven by the increased level of 2'-deoxy-8-oxoguanosine in DNA. The tested conjugates were found to be weak topoisomerase II inhibitors and classical DNA intercalators. Compounds 33, 34, and 36 fluorescently stained lysosomes in HepG2 cells. Additionally, we performed a similarity-based assessment of the property profile of the conjugates using the principal component analysis. The creation of an inhibitory profile and descriptor-based plane allowed forming a structure-activity landscape. Finally, a ligand-based comparative molecular field analysis was carried out to specify the (un)favorable structural modifications (pharmacophoric pattern) that are potentially important for the quantitative structure-activity relationship modeling of the carborane-naphthalimide conjugates.


Assuntos
Antineoplásicos , Substâncias Intercalantes , Naftalimidas , Neoplasias , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Células Hep G2 , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Naftalimidas/síntese química , Naftalimidas/química , Naftalimidas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
9.
Chembiochem ; 21(15): 2187-2195, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32182393

RESUMO

The conjugation of organometallic groups to current ß-lactam antibiotics is a field of increasing study due to the ability of certain organometallic groups to enhance the antibiotic potency of these drugs. Herein, we report the antibacterial properties of two metallocenyl (ferrocenyl and ruthenocenyl) 7-aminocephalosporanic acid (7-ACA) antibiotic conjugates. Continuing a trend we found in our previous studies, the ruthenocenyl conjugate showed greater antibacterial activity than its ferrocenyl counterpart. Compared with the previously published 7-aminodesacetoxycephalosporanic acid (7-ADCA) conjugates, the 3-acetyloxymethyl group significantly improved the compounds' activity. Furthermore, the Rc-7-ACA compound was more active against clinical Staphylococcus aureus isolates than the ampicillin reference. Noticeably, neither of the two new compounds showed an undesirable toxic effect in HeLa and L929 cells at the concentrations at which they displayed strong antibacterial effects. The antibacterial activity of the two metallocenyl 7-ACA derivatives was further confirmed by scanning electron microscopy (SEM). SEM micrographs showed that bacteria treated with metallocenyl 7-ACA derivatives feature cell wall damage and morphology changes. Using a CTX-M-14 ß-lactamase competition assay based on nitrocefin hydrolysis, we showed that the Rc-7-ACA bound more favorably to CTX-M-14 than its ferrocenyl counterpart, again confirming the superiority of the ruthenocenyl moiety over the ferrocenyl one in interacting with proteins. We also report a 1.47 Å resolution crystal structure of Rc-7-ACA in complex with the CTX-M-14 E166A mutant, an enzyme sharing a similar active site configuration with penicillin-binding proteins, the molecular target of ß-lactam antibiotics. These results strengthen the case for the antibacterial utility of the Rc and Fc groups.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Cefalosporinas/química , Cefalosporinas/farmacologia , beta-Lactamases/química , Antibacterianos/metabolismo , Cefalosporinas/metabolismo , Cristalografia por Raios X , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica , beta-Lactamases/metabolismo
10.
Photochem Photobiol Sci ; 18(10): 2449-2460, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31407765

RESUMO

Glycol nucleic acids (GNA) are synthetic genetic-like polymers with an acyclic three-carbon propylene glycol phosphodiester backbone. Here, synthesis, luminescence properties, circular dichroism (CD) spectra, and confocal microscopy speciation studies of (R,S) and (S,R) pyrenyl-GNA (pyr-GNA) nucleosides are reported in HeLa cells. Enantiomerically pure nucleosides were obtained by a Sharpless asymmetric dihydroxylation reaction followed by semi-preparative high-performance liquid chromatography (HPLC) separation using Amylose-2 as the chiral stationary phase. The enantiomeric relationship between stereoisomers was confirmed by CD spectra, and the absolute configurations were assigned based on experimental and theoretical CD spectra comparisons. The pyr-GNA nucleosides were not cytotoxic against human cervical (HeLa) cancer cells and thus were utilized as luminescent probes in the imaging of these cells with confocal microscopy. Cellular staining patterns were identical for both enantiomers in HeLa cells. Compounds showed no photocytotoxic effect and were localized in the lipid membranes of the mitochondria, in cellular vesicles and in other lipid cellular compartments. The overall distribution of the pyrene and pyrenyl-GNA nucleosides inside the living HeLa cells differed, since the former compound gives a more granular staining pattern and the latter a more diffuse one.


Assuntos
Corantes Fluorescentes/química , Microscopia Confocal , Ácidos Nucleicos/química , Nucleosídeos/síntese química , Pirenos/química , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Cristalografia por Raios X , Teoria da Densidade Funcional , Corantes Fluorescentes/síntese química , Glicóis/química , Células HeLa , Humanos , Conformação Molecular , Nucleosídeos/química , Nucleosídeos/farmacologia , Estereoisomerismo
11.
Cancer Immunol Immunother ; 67(4): 653-662, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29335856

RESUMO

BACKGROUND: Tumor metastasis and immune evasion present major challenges of cancer treatment. Radiotherapy can overcome immunosuppressive tumor microenvironments. Anecdotal reports suggest abscopal anti-tumor immune responses. This study assesses abscopal effects of radiotherapy in combination with mRNA-based cancer vaccination (RNActive®). METHODS: C57BL/6 mice were injected with ovalbumin-expressing thymoma cells into the right hind leg (primary tumor) and left flank (secondary tumor) with a delay of 4 days. Primary tumors were irradiated with 3 × 2 Gy, while secondary tumors were shielded. RNA and combined treatment groups received mRNA-based RNActive® vaccination. RESULTS: Radiotherapy and combined radioimmunotherapy significantly delayed primary tumor growth with a tumor control in 15 and 53% of mice, respectively. In small secondary tumors, radioimmunotherapy significantly slowed growth rate compared to vaccination (p = 0.002) and control groups (p = 0.01). Cytokine microarray analysis of secondary tumors showed changes in the cytokine microenvironment, even in the non-irradiated contralateral tumors after combination treatment. CONCLUSION: Combined irradiation and immunotherapy is able to induce abscopal responses, even with low, normofractionated radiation doses. Thus, the combination of mRNA-based vaccination with irradiation might be an effective regimen to induce systemic anti-tumor immunity.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Modelos Animais de Doenças , Ovalbumina/imunologia , RNA Mensageiro/imunologia , Radioimunoterapia , Timoma/terapia , Neoplasias do Timo/terapia , Animais , Terapia Combinada , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/genética , RNA Mensageiro/genética , Timoma/genética , Timoma/imunologia , Neoplasias do Timo/genética , Neoplasias do Timo/imunologia
12.
Molecules ; 23(1)2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-29295572

RESUMO

In the present paper, we report the synthesis and evaluation of in vitro antimicrobial activities of aziridine-thiourea derivatives. A series of aziridines in reaction with isocyanates and isothiocyanates to obtain urea and thiourea derivatives were used. The structures of all new products were confirmed based on spectroscopic data (¹H-NMR, 13C-NMR, HR-MS). These compounds were screened for their in vitro antimicrobial activity against a panel of Gram-positive and Gram-negative strains of bacteria. Six of the tested compounds appeared to be promising agents against reference strains of Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. Subsequently, compounds exhibiting promising antibacterial activity were tested against twelve clinical isolates of S. aureus from three different sources of infection. The most bactericidal compounds (MIC = 16-32 µg/mL) showed better antibacterial activity against MRSA than ampicillin and streptomycin. The in vitro cytotoxicity analysis on L929 murine fibroblast and HeLa human tumor cell line using the MTT assay allowed us to select the least toxic compounds for future investigation.


Assuntos
Aziridinas/síntese química , Aziridinas/farmacologia , Tioureia/química , Ureia/química , Antibacterianos/farmacologia , Morte Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Células HeLa , Humanos , Indicadores e Reagentes , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
13.
Int J Cancer ; 137(2): 372-84, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25530186

RESUMO

Protein- and peptide-based tumor vaccines depend on strong adjuvants to induce potent immune responses. Here, we demonstrated that a recently developed novel adjuvant based on a non-coding, long-chain RNA molecule, termed RNAdjuvant(®) , profoundly increased immunogenicity of both antigen formats. RNAdjuvant(®) induced balanced, long-lasting immune responses that resulted in a strong anti-tumor activity. A direct comparison to Poly(I:C) showed superior efficacy of our adjuvant to enhance antigen-specific multifunctional CD8(+) T-cell responses and mediate anti-tumor responses induced by peptide derived from HPV-16 E7 protein in the syngeneic TC-1 tumor, a murine model of human HPV-induced cervical cancer. Moreover, the adjuvant was able to induce functional memory responses that mediated complete tumor remission. Despite its remarkable immunostimulatory activity, our RNA-based adjuvant exhibited an excellent pre-clinical safety profile. It acted only locally at the injection site where it elicited a transient but strong up-regulation of pro-inflammatory and anti-viral cytokines as well as cytoplasmic RNA sensors without systemic cytokine release. This was followed by the activation of immune cells in the draining lymph nodes. Our data indicate that our RNA-based adjuvant is a safe and potent immunostimulator that may profoundly improve the efficacy of a variety of cancer vaccines.


Assuntos
Adjuvantes Imunológicos , Vacinas Anticâncer/imunologia , RNA Longo não Codificante/imunologia , Neoplasias do Colo do Útero/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/farmacologia , Linhagem Celular Transformada , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Memória Imunológica/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas E7 de Papillomavirus/imunologia , Peptídeos/imunologia , Peptídeos/farmacologia , Poli I-C/imunologia , Poli I-C/farmacologia , RNA Longo não Codificante/genética , Resultado do Tratamento , Neoplasias do Colo do Útero/tratamento farmacológico
14.
Eur J Immunol ; 44(4): 1143-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24338929

RESUMO

Regulatory T (Treg) cells suppress immune responses by downregulating the expression of costimulatory molecules CD80 and CD86 on dendritic cells (DCs) through cytotoxic T lymphocyte antigen 4 (CTLA4). However, it is unclear whether inducible Treg (iTreg) cells can hamper immune responses via the same mechanism. Moreover, whether a reverse signal sent by CTLA4 alone is sufficient to prevent maturation of DCs has never been evaluated. Here, we demonstrate that stimulation of DCs with CTLA4, either expressed by inducible Treg cells or by cross-linking with CTLA4Fc fusion protein, can significantly inhibit LPS-induced CD80 and CD86 mRNA and protein expression in both mouse and human DCs. Importantly, CTLA4Fc-treated DCs had reduced ability to stimulate CD4(+) and CD8(+) T-cell proliferation and cytokine production in both syngeneic and allogeneic settings. We also investigated the molecular mechanism involved in the induction of tolerogenic DCs by CTLA4. We determined that the interaction of CTLA4 with its high affinity ligand CD80 on DCs induces STAT3 phosphorylation followed by reduction of NF-κB activity, leading to suppression of CD80 and CD86 gene transcription and protein production. Our work opens new windows for the generation of tolerogenic DCs that could ultimately be used for treating autoimmune diseases and transplant rejection.


Assuntos
Células Dendríticas/imunologia , Proteínas Recombinantes de Fusão/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Proliferação de Células , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
15.
Sci Rep ; 14(1): 3521, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347115

RESUMO

Nowadays, dermatophyte infections are relatively easy to cure, especially since the introduction of orally administered antifungals such as terbinafine and itraconazole. However, these drugs may cause side effects due to liver damage or their interactions with other therapeutics. Hence, the search for new effective chemotherapeutics showing antidermatophyte activity seems to be the urge of the moment. Potassium salts of N-acylhydrazinecarbodithioates are used commonly as precursors for the synthesis of biologically active compounds. Keeping that in mind, the activity of a series of five potassium N-acylhydrazinecarbodithioates (1a-e) and their aminotriazole-thione derivatives (2a-e) was evaluated against a set of pathogenic, keratinolytic fungi, such as Trichophyton ssp., Microsporum ssp. and Chrysosporium keratinophilum, but also against some Gram-positive and Gram-negative bacteria. All tested compounds were found non-toxic for L-929 and HeLa cells, with the IC30 and IC50 values assessed in the MTT assay above 128 mg/L. The compound 5-amino-3-(naphtalene-1-yl)-4,5-dihydro-1H-1,2,4-triazole-5-thione (2d) was found active against all fungal strains tested. Scanning Electron Microscopy (SEM) revealed inhibition of mycelium development of Trichophyton rubrum cultivated on nail fragments and treated with 2d 24 h after infection with fungal spores. Transmission Electron Microscopy (TEM) observation of mycelium treated with 2d showed ultrastructural changes in the morphology of germinated spores. Finally, the RNA-seq analysis indicated that a broad spectrum of genes responded to stress induced by the 2d compound. In conclusion, the results confirm the potential of N-acylhydrazinecarbodithioate derivatives for future use as promising leads for new antidermatophyte agents development.


Assuntos
Sais , Tionas , Humanos , Amitrol (Herbicida) , Potássio , Antibacterianos/uso terapêutico , Células HeLa , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Testes de Sensibilidade Microbiana
16.
Methods Mol Biol ; 2786: 183-203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814395

RESUMO

Developing effective mRNA vaccines poses certain challenges concerning mRNA stability and ability to induce sufficient immune stimulation and requires a specific panel of techniques for production and testing. Here, we describe the production of stabilized mRNA vaccines (RNActive® technology) with enhanced immunogenicity, generated using conventional nucleotides only, by introducing changes to the mRNA sequence and by formulation into lipid nanoparticles. Methods described here include the synthesis, purification, and formulation of mRNA vaccines as well as a comprehensive panel of in vitro and in vivo methods for evaluation of vaccine quality and immunogenicity.


Assuntos
Vacinas de mRNA , Animais , Camundongos , Humanos , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Nanopartículas/química , Imunogenicidade da Vacina , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/genética , Estabilidade de RNA , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Lipossomos
17.
Gels ; 9(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826313

RESUMO

This research concerns the investigation of the preparation of polymeric nanocarriers containing a flavonoid-naringenin, xanthohumol or isoxanthohumol-based on Pluronics by the thin-film formation method. The size of the formed micelles and their stability upon dilution were evaluated using Dynamic light scattering (DLS) analysis; the high values of the drug loading and the encapsulation efficiency confirmed that the proposed systems of flavonoids delivery consisting of Pluronic P123 and F127 nanomicelles could effectively distribute the drug into tumour tissues, which makes these nanocarriers ideal candidates for passive targeting of cancer cells by the enhanced permeation and retention (EPR) effect. The in vitro cytotoxicity of proposed flavonoids in the Pluronic formulations was investigated by the SRB assay with human colon cancer cells. We designed mixed polymeric micelles, which was a successful drug delivery system for the case of naringenin not being able to enhance the bioavailability and cytotoxic activity of xanthohumol and isoxanthohumol. Furthermore, it was observed that the higher amount of polymer in the formulation achieved better cytotoxic activity.

18.
ChemMedChem ; 18(7): e202200666, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734215

RESUMO

Synthesis of acridine derivatives that act as DNA-targeting anticancer agents is an evolving field and has resulted in the introduction of several drugs into clinical trials. Carboranes can be of importance in designing biologically active compounds due to their specific properties. Therefore, a series of novel acridine analogs modified with carborane clusters were synthesized. The DNA-binding ability of these analogs was evaluated on calf thymus DNA (ct-DNA). Results of these analyses showed that 9-[(1,7-dicarba-closo-dodecaborane-1-yl)propylamino]acridine (30) interacted strongly with ct-DNA, indicating its ability to intercalate into DNA, whereas 9-[(1,7-dicarba-closo-dodecaborane-1-yl)propanamido]acridine (29) changed the B-form of ct-DNA to the Z form. Compound 30 demonstrated cytotoxicity, was able to inhibit cell proliferation, arrest the cell cycle in the S phase in the HeLa cancer cell line, and induced the production of reactive oxygen species (ROS). In addition, it was specifically localized in lysosomes and was a weak inhibitor of Topo IIα.


Assuntos
Antineoplásicos , Boranos , Acridinas/farmacologia , Boranos/química , Antineoplásicos/farmacologia , DNA , Acridonas/farmacologia
19.
Dalton Trans ; 52(6): 1551-1567, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36655722

RESUMO

The first-in-class luminescent dinucleoside phosphate analogs with a [Re2(µ-Cl)2(CO)6(µ-pyridazine)] "click" linker as a replacement for the natural phosphate group are reported together with the synthesis of luminescent adenosine and thymidine derivatives having the [Re2(µ-Cl)2(CO)6(µ-pyridazine)] entity attached to positions 5' and 3', respectively. These compounds were synthesized by applying inverse-electron-demand Diels-Alder and copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition reactions in three or four steps. The obtained compounds exhibited orange emission (λPL ≈ 600 nm, ΦPL ≈ 0.10, and τ = 0.33-0.61 µs) and no toxicity (except for one nucleoside) to human HeLa cervical epithelioid and Ishikawa endometrial adenocarcinoma cancer cells in vitro. Furthermore, the compounds' ability to inhibit the growth of Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacterial strains was moderate and only observed at a high concentration of 100 µM. Confocal microscopy imaging revealed that the "dirhenium carbonyl" dinucleosides and nucleosides localized mainly in the membranous structures of HeLa cells and uniformly inside S. aureus and E. coli bacterial cells. An interesting finding was that some of the tested compounds were also found in the nuclei of HeLa cells.


Assuntos
Nucleosídeos , Piridazinas , Humanos , Nucleosídeos/química , Células HeLa , Fosfatos de Dinucleosídeos , Fosfatos , Escherichia coli , Staphylococcus aureus , Química Click/métodos
20.
J Hazard Mater ; 418: 126316, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118550

RESUMO

Recently, nanomaterials synthesized ecologically using microorganisms have attracted much interest. In the present study, the ability of Gloeophyllum striatum to synthesize silver nanoparticles is described for the first time. Nanoparticles were formed in an eco-friendly extracellular manner and characterized by UV-Vis, FT-IR, MADLS and SEM techniques. The obtained nanoparticles showed excellent activity against gram-positive and gram-negative bacteria. The MIC values for gram-negative bacteria were 15 µM, while for gram-positive strains they reached 30 µM. The haemolytic and cytotoxic activities of the synthesized nanoparticles towards mammalian cells were also determined. The addition of AgNPs at the concentrations above 30 µM caused 50% haemolysis of red blood cells after they 24-hour incubation. A decrease in the viability of fibroblasts by over 50% was also found in the samples treated with nanoparticles at the concentrations above 30 µM. The ecotoxicological risk of silver nanoparticles was assessed using A. franciscana and D. magna crustaceans as well as L. sativum plants. The EC50 values for A. franciscana and D. magna were 61.97 and 0.275 µM, respectively. An about 20% reduction in the length of L. sativum shoots and roots was noted after the treatment with AgNPs at the concentration of 100 µM.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Antibacterianos/toxicidade , Basidiomycota , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Medição de Risco , Prata/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA