Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neurosci ; 38(45): 9618-9634, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30242049

RESUMO

Although age-at-injury influences chronic recovery from traumatic brain injury (TBI), the differential effects of age on early outcome remain understudied. Using a male murine model of moderate contusion injury, we investigated the underlying mechanism(s) regulating the distinct response between juvenile and adult TBI. We demonstrate similar biomechanical and physical properties of naive juvenile and adult brains. However, following controlled cortical impact (CCI), juvenile mice displayed reduced cortical lesion formation, cell death, and behavioral deficits at 4 and 14 d. Analysis of high-resolution laser Doppler imaging showed a similar loss of cerebral blood flow (CBF) in the ipsilateral cortex at 3 and 24 h post-CCI, whereas juvenile mice showed enhanced subsequent restoration at 2-4 d compared with adults. These findings correlated with reduced blood-brain barrier (BBB) disruption and increased perilesional vessel density. To address whether an age-dependent endothelial cell (EC) response affects vessel stability and tissue outcome, we magnetically isolated CD31+ ECs from sham and injured cortices and evaluated mRNA expression. Interestingly, we found increased transcripts for BBB stability-related genes and reduced expression of BBB-disrupting genes in juveniles compared with adults. These differences were concomitant with significant changes in miRNA-21-5p and miR-148a levels. Accompanying these findings was robust GFAP immunoreactivity, which was not resolved by day 35. Importantly, pharmacological inhibition of EC-specific Tie2 signaling abolished the juvenile protective effects. These findings shed new mechanistic light on the divergent effects that age plays on acute TBI outcome that are both spatial and temporal dependent.SIGNIFICANCE STATEMENT Although a clear "window of susceptibility" exists in the developing brain that could deter typical developmental trajectories if exposed to trauma, a number of preclinical models have demonstrated evidence of early recovery in younger patients. Our findings further demonstrate acute neuroprotection and improved restoration of cerebral blood flow in juvenile mice subjected to cortical contusion injury compared with adults. We also demonstrate a novel role for endothelial cell-specific Tie2 signaling in this age-related response, which is known to promote barrier stability, is heightened in the injured juvenile vasculature, and may be exploited for therapeutic interventions across the age spectrum following traumatic brain injury.


Assuntos
Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/metabolismo , Circulação Cerebrovascular/fisiologia , Receptor TIE-2/metabolismo , Fatores Etários , Animais , Células Cultivadas , Masculino , Camundongos
2.
J Biol Chem ; 293(31): 12239-12247, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29921584

RESUMO

Toll-interacting protein (Tollip) deficiency has been implicated in complex inflammatory and infectious diseases whose mechanisms are poorly understood. Comparing the gene expression profiles of WT and Tollip-deficient murine embryonic fibroblasts, we observed here that Tollip deficiency selectively reduces the expression of the inflammatory cytokines interleukin 6 (IL-6), IL-12, and tumor necrosis factor α (TNFα) but potentiates the expression of fatty acid-binding protein 4 (FABP4) in these cells. We also observed that expression of hypoxia-inducible factor 1-α (HIF1α) is reduced, whereas that of signal transducer and activator of transcription 5 (STAT5) is elevated, in Tollip-deficient cells, correlating with the decreased expression of inflammatory cytokines and increased expression of FABP4 in these cells. We further found that the coupling of ubiquitin to ER degradation (CUE) domain of Tollip is required for stimulating HIF1α activity, because Tollip CUE-domain mutant cells exhibited reduced levels of HIF1α and selected cytokines. Tollip is known to mediate autophagy and lysosome fusion, and herein we observed that Tollip's autophagy function is required for modulating STAT5 and FABP4 expression. Bafilomycin A, an inhibitor of lysosome fusion, enhanced STAT5 and FABP4 expression in WT fibroblasts, whereas torin 2, an activator of autophagy, reduced STAT5 and FABP4 expression in Tollip-deficient fibroblasts. Taken together, our study reveals that Tollip differentially modulates HIF1α and STAT5 expression in fibroblasts, potentially explaining the complex and context-dependent contribution of Tollip to disease development.


Assuntos
Fibroblastos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator de Transcrição STAT5/genética , Animais , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Ligação Proteica , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
3.
J Neuroinflammation ; 16(1): 210, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711546

RESUMO

BACKGROUND: The continuum of pro- and anti-inflammatory response elicited by traumatic brain injury (TBI) is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain ill -defined. METHODS: Here, we demonstrate that using bone marrow chimeric mice and systemic inhibition of EphA4 receptor shifts the pro-inflammatory milieu to pro-resolving following acute TBI. RESULTS: EphA4 expression is increased in the injured cortex as early as 2 h post-TBI and on CX3CR1gfp-positive cells in the peri-lesion. Systemic inhibition or genetic deletion of EphA4 significantly reduced cortical lesion volume and shifted the inflammatory profile of peripheral-derived immune cells to pro-resolving in the damaged cortex. These findings were consistent with in vitro studies showing EphA4 inhibition or deletion altered the inflammatory state of LPS-stimulated monocyte/macrophages towards anti-inflammatory. Phosphoarray analysis revealed that EphA4 may regulate pro-inflammatory gene expression by suppressing the mTOR, Akt, and NF-κB pathways. Our human metadata analysis further demonstrates increased EPHA4 and pro-inflammatory gene expression, which correlates with reduced AKT concurrent with increased brain injury severity in patients. CONCLUSIONS: Overall, these findings implicate EphA4 as a novel mediator of cortical tissue damage and neuroinflammation following TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/metabolismo , Encefalite/metabolismo , Receptor EphA4/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Encefalite/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Receptor EphA4/genética
4.
Brain Behav Immun ; 81: 617-629, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351186

RESUMO

Increasing reports of pregnancy events leading to maternal microbiome dysbiosis (MMD) show strong correlates with atypical neurodevelopmental outcomes. However, the mechanism(s) driving microbiome-mediated behavioral dysfunction in offspring remain understudied. Here, we demonstrate the presence of a novel gut commensal bacterium strain, Lactobacillus murinus HU-1, was sufficient to rescue behavioral deficits and brain region-specific microglial activationobserved in MMD-reared murine offspring. We furtheridentified a postnatal window of susceptibility that could prevent social impairments with timed maternal administration of the symbiotic bacterium. Moreover, MMD increased expression of microglial senescence genes, Trp53 and Il1ß, and Cx3cr1 protein in the prefrontal cortex, which correlated with dysfunctional modeling of synapses and accompanied dysbiosis-induced microglial activation. MMD male offspring harboring Lactobacillus murinus HU-1 or lacking Cx3cr1 showed amelioration of these effects. The current study describes a new avenue of influence by which maternally transferred Lactobacillus drives proper development of social behavior in the offspring through microglia-specific regulation of Cx3cr1 signaling.


Assuntos
Lactobacillus/metabolismo , Microbiota/fisiologia , Transtornos do Neurodesenvolvimento/microbiologia , Animais , Transtorno do Espectro Autista/microbiologia , Receptor 1 de Quimiocina CX3C/metabolismo , Disbiose/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/microbiologia , Gravidez , Comportamento Social , Proteína Supressora de Tumor p53/metabolismo
5.
Brain Behav Immun ; 59: 200-210, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27720815

RESUMO

The excessive accumulation of specific cellular proteins or autophagic vacuoles (AVs) within neurons is a pathologic hallmark of neurodegenerative diseases. Constitutive autophagy in neurons prevents abnormal intracellular protein aggregation and is critical for maintaining cell survival. Since our previous study showed that Toll-interacting protein (Tollip)-deficient macrophages had constitutive disruption of endosome-lysosome fusion, we hypothesize that Tollip deficiency may also promote neuron death via blockage of autophagy completion. Indeed, we observed significantly higher levels of neuron death in the brain regions of cerebral cortex, hippocampus, and cerebellum from ApoE-/-/Tollip-/- mice as compared to ApoE-/- mice fed with high fat diet (HFD). We further documented diminished density of neurons and increased ratios of TUNEL positive cells in the hippocampus of ApoE-/-/Tollip-/- mice. The ultrastructural electron microscopy analyses revealed neuron cell shrinkage as well as loss of intracellular structure in brain tissues from ApoE-/-/Tollip-/- mice. There was dramatic accumulation of autophagosomes in the cytoplasm, elevated accumulation of ß-amyloid and α-synuclein, and increased levels of p62 and Parkin in the brain tissues from ApoE-/-/Tollip-/- mice as compared to ApoE-/- mice. Our data suggest that Tollip may play a crucial role in sustaining neuron health by facilitating the completion of autophagy, and that Tollip-deficiency may accelerate neuron death related to neurological disease such as Alzheimer's disease.


Assuntos
Apolipoproteínas E/deficiência , Autofagia/genética , Dieta Hiperlipídica , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Degeneração Neural/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/citologia , Região CA1 Hipocampal/patologia , Tamanho Celular , Endossomos/fisiologia , Lisossomos/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Fagossomos/fisiologia , alfa-Sinucleína/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-25067859

RESUMO

When using overmoded corrugated waveguide transmission lines for high power applications, it is necessary to control the mode content of the system. Ideally, overmoded corrugated transmission lines operate in the fundamental HE11 mode and provide low losses for long distances. Unwanted higher order modes (HOMs), particularly LP11 and HE12, are often excited in the experimental systems due to practical misalignments in the transmission line system. This paper discusses how the unwanted modes propagate along with the fundamental mode in the transmission line system by formulating an equation that relates the center of power offset and angle of propagation of a beam (for the HE11 and LP11 modes) or the waist size and phase front radius of curvature of a beam (for the HE11 and HE12 modes). By introducing two miter bend correctors into the transmission system-miter bends that have slightly angled or ellipsoidal mirrors-the HOMs can be precisely manipulated in the system. This technique can be used to eliminate small quantities of unwanted modes, thereby creating a nearly pure fundamental mode beam with minimal losses. Examples of these applications are calculated and show the theoretical conversion of up to 10% HOM content into the fundamental HE11 mode with minimal losses.

7.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737458

RESUMO

Circulating monocytes have emerged as key regulators of the neuroinflammatory milieu in a number of neuropathological disorders. Ephrin type A receptor 4 (Epha4) receptor tyrosine kinase, a prominent axon guidance molecule, has recently been implicated in the regulation of neuroinflammation. Using a mouse model of brain injury and a GFP BM chimeric approach, we found neuroprotection and a lack of significant motor deficits marked by reduced monocyte/macrophage cortical infiltration and an increased number of arginase-1+ cells in the absence of BM-derived Epha4. This was accompanied by a shift in monocyte gene profile from pro- to antiinflammatory that included increased Tek (Tie2 receptor) expression. Inhibition of Tie2 attenuated enhanced expression of M2-like genes in cultured Epha4-null monocytes/macrophages. In Epha4-BM-deficient mice, cortical-isolated GFP+ monocytes/macrophages displayed a phenotypic shift from a classical to an intermediate subtype, which displayed reduced Ly6chi concomitant with increased Ly6clo- and Tie2-expressing populations. Furthermore, clodronate liposome-mediated monocyte depletion mimicked these effects in WT mice but resulted in attenuation of phenotype in Epha4-BM-deficient mice. This demonstrates that monocyte polarization not overall recruitment dictates neural tissue damage. Thus, coordination of monocyte proinflammatory phenotypic state by Epha4 is a key regulatory step mediating brain injury.


Assuntos
Lesões Encefálicas , Monócitos , Humanos , Lesões Encefálicas/metabolismo , Efrinas/metabolismo , Monócitos/metabolismo , Fenótipo , Receptor EphB2/metabolismo , Animais , Camundongos
8.
Front Mol Neurosci ; 15: 852243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283725

RESUMO

Background: Inflammation is a significant contributor to neuronal death and dysfunction following traumatic brain injury (TBI). Recent evidence suggests that interferons may be a key regulator of this response. Our studies evaluated the role of the Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) signaling pathway in a murine model of TBI. Methods: Male, 8-week old wildtype, STING knockout (-/-), cGAS -/-, and NLRX1 -/- mice were subjected to controlled cortical impact (CCI) or sham injury. Histopathological evaluation of tissue damage was assessed using non-biased stereology, which was complemented by analysis at the mRNA and protein level using qPCR and western blot analysis, respectively. Results: We found that STING and Type I interferon-stimulated genes were upregulated after CCI injury in a bi-phasic manner and that loss of cGAS or STING conferred neuroprotection concomitant with a blunted inflammatory response at 24 h post-injury. cGAS -/- animals showed reduced motor deficits 4 days after injury (dpi), and amelioration of tissue damage was seen in both groups of mice up to 14 dpi. Given that cGAS requires a cytosolic damage- or pathogen-associated molecular pattern (DAMP/PAMP) to prompt downstream STING signaling, we further demonstrate that mitochondrial DNA is present in the cytosol after TBI as one possible trigger for this pathway. Recent reports suggest that the immune modulator NLR containing X1 (NLRX1) may sequester STING during viral infection. Our findings show that NLRX1 may be an additional regulator that functions upstream to regulate the cGAS-STING pathway in the brain. Conclusions: These findings suggest that the canonical cGAS-STING-mediated Type I interferon signaling axis is a critical component of neural tissue damage following TBI and that mtDNA may be a possible trigger in this response.

10.
Front Mol Neurosci ; 14: 747770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630039

RESUMO

Erythropoietin-producing human hepatocellular receptors play a major role in central nervous system injury. Preclinical and clinical studies revealed the upregulation of erythropoietin-producing human hepatocellular A4 (EphA4) receptors in the brain after acute traumatic brain injury. We have previously reported that Cx3cr1-expressing cells in the peri-lesion show high levels of EphA4 after the induction of controlled cortical impact (CCI) injury in mice. Cx3cr1 is a fractalkine receptor expressed on both resident microglia and peripheral-derived macrophages. The current study aimed to determine the role of microglial-specific EphA4 in CCI-induced damage. We used Cx3cr1 CreER/+ knock-in/knock-out mice, which express EYFP in Cx3cr1-positive cells to establish microglia, EphA4-deficient mice following 1-month tamoxifen injection. Consistent with our previous findings, induction of CCI in wild-type (WT) Cx3cr1 CreER/+ EphA4 +/+ mice increased EphA4 expression on EYFP-positive cells in the peri-lesion. To distinguish between peripheral-derived macrophages and resident microglia, we exploited GFP bone marrow-chimeric mice and found that CCI injury increased EphA4 expression in microglia (TMEM119+GFP-) using immunohistochemistry. Using Cx3cr1 CreER/+ EphA4 f/f (KO) mice, we observed that the EphA4 mRNA transcript was undetected in microglia but remained present in whole blood when compared to WT. Finally, we found no difference in lesion volume or blood-brain barrier (BBB) disruption between WT and KO mice at 3 dpi. Our data demonstrate a nonessential role of microglial EphA4 in the acute histopathological outcome in response to CCI.

11.
Sci Rep ; 10(1): 15374, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958852

RESUMO

Brain injury resulting from repeated mild traumatic insult is associated with cognitive dysfunction and other chronic co-morbidities. The current study tested the effects of aberrant neurogenesis in a mouse model of repeated mild traumatic brain injury (rmTBI). Using Barnes Maze analysis, we found a significant reduction in spatial learning and memory at 24 days post-rmTBI compared to repeated sham (rSham) injury. Cell fate analysis showed a greater number of BrdU-labeled cells which co-expressed Prox-1 in the DG of rmTBI-injured mice which coincided with enhanced cFos expression for neuronal activity. We then selectively ablated dividing neural progenitor cells using a 7-day continuous infusion of Ara-C prior to rSham or rmTBI. This resulted in attenuation of cFos and BrdU-labeled cell changes and prevented associated learning and memory deficits. We further showed this phenotype was ameliorated in EphA4f./f/Tie2-Cre knockout compared to EphA4f./f wild type mice, which coincided with altered mRNA transcript levels of MCP-1, Cx43 and TGFß. These findings demonstrate that cognitive decline is associated with an increased presence of immature neurons and gene expression changes in the DG following rmTBI. Our data also suggests that vascular EphA4-mediated neurogenic remodeling adversely affects learning and memory behavior in response to repeated insult.


Assuntos
Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Deficiências da Aprendizagem/metabolismo , Transtornos da Memória/metabolismo , Neurogênese/fisiologia , Receptor EphA4/metabolismo , Animais , Concussão Encefálica/complicações , Modelos Animais de Doenças , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/patologia , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Aprendizagem Espacial/fisiologia
12.
Front Immunol ; 8: 511, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529512

RESUMO

Innate leukocytes manifest dynamic and distinct inflammatory responses upon challenges with rising dosages of pathogen-associated molecular pattern molecules such as lipopolysaccharide (LPS). To differentiate signal strengths, innate leukocytes may utilize distinct intracellular signaling circuitries modulated by adaptor molecules. Toll-interacting protein (Tollip) is one of the critical adaptor molecules potentially playing key roles in modulating the dynamic adaptation of innate leukocytes to varying dosages of external stimulants. While Tollip may serve as a negative regulator of nuclear factor κ of activated B cells signaling pathway in cells challenged with higher dosages of LPS, it acts as a positive regulator for low-grade chronic inflammation in leukocytes programmed by subclinical low-dosages of LPS. This review aims to discuss recent progress in our understanding of complex innate leukocyte dynamics and its relevance in the pathogenesis of resolving versus non-resolving chronic inflammatory diseases.

13.
G3 (Bethesda) ; 7(8): 2799-2806, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28655738

RESUMO

A unique eye color, called tiger-eye, segregates in the Puerto Rican Paso Fino (PRPF) horse breed and is characterized by a bright yellow, amber, or orange iris. Pedigree analysis identified a simple autosomal recessive mode of inheritance for this trait. A genome-wide association study (GWAS) with 24 individuals identified a locus on ECA 1 reaching genome-wide significance (Pcorrected = 1.32 × 10-5). This ECA1 locus harbors the candidate gene, Solute Carrier Family 24 (Sodium/Potassium/Calcium Exchanger), Member 5 (SLC24A5), with known roles in pigmentation in humans, mice, and zebrafish. Humans with compound heterozygous mutations in SLC24A5 have oculocutaneous albinism (OCA) type 6 (OCA6), which is characterized by dilute skin, hair, and eye pigmentation, as well as ocular anomalies. Twenty tiger-eye horses were homozygous for a nonsynonymous mutation in exon 2 (p.Phe91Tyr) of SLC24A5 (called here Tiger-eye 1), which is predicted to be deleterious to protein function. Additionally, eight of the remaining 12 tiger-eye horses heterozygous for the p.Phe91Tyr variant were also heterozygous for a 628 bp deletion encompassing all of exon 7 of SLC24A5 (c.875-340_1081+82del), which we will call here the Tiger-eye 2 allele. None of the 122 brown-eyed horses were homozygous for either tiger-eye-associated allele or were compound heterozygotes. Further, neither variant was detected in 196 horses from four related breeds not known to have the tiger-eye phenotype. Here, we propose that two mutations in SLC24A5 affect iris pigmentation in tiger-eye PRPF horses. Further, unlike OCA6 in humans, the Tiger-eye 1 mutation in its homozygous state or as a compound heterozygote (Tiger-eye 1/Tiger-eye 2) does not appear to cause ocular anomalies or a change in coat color in the PRPF horse.


Assuntos
Antiporters/genética , Cor de Olho/genética , Estudo de Associação Genômica Ampla , Cavalos/genética , Iris/fisiologia , Animais , Éxons/genética , Feminino , Técnicas de Genotipagem , Homozigoto , Masculino , Linhagem , Fenótipo , Deleção de Sequência/genética , Pigmentação da Pele/genética
14.
Sci Rep ; 6: 34672, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703259

RESUMO

Functionally compromised neutrophils contribute to adverse clinical outcomes in patients with severe inflammation and injury such as colitis and sepsis. However, the ontogeny of dysfunctional neutrophil during septic colitis remain poorly understood. We report that the dysfunctional neutrophil may be derived by the suppression of Toll-interacting-protein (Tollip). We observed that Tollip deficient neutrophils had compromised migratory capacity toward bacterial product fMLF due to reduced activity of AKT and reduction of FPR2, reduced potential to generate bacterial-killing neutrophil extra-cellular trap (NET), and compromised bacterial killing activity. On the other hand, Tollip deficient neutrophils had elevated levels of CCR5, responsible for their homing to sterile inflamed tissues. The inflamed and incompetent neutrophil phenotype was also observed in vivo in Tollip deficient mice subjected to DSS-induced colitis. We observed that TUDCA, a compound capable of restoring Tollip cellular function, can potently alleviate the severity of DSS-induced colitis. In humans, we observed significantly reduced Tollip levels in peripheral blood collected from human colitis patients as compared to blood samples from healthy donors. Collectively, our data reveal a novel mechanism in Tollip alteration that underlies the inflamed and incompetent polarization of neutrophils leading to severe outcomes of colitis.


Assuntos
Colite/complicações , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Leucócitos/imunologia , Sepse/imunologia , Adulto , Animais , Colite/induzido quimicamente , Colite/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores CCR5/metabolismo , Sepse/metabolismo , Sepse/microbiologia , Ácido Tauroquenodesoxicólico/farmacologia , Adulto Jovem
15.
Am J Bot ; 96(6): 1108-15, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21628261

RESUMO

One method to determine past climate has been the use of leaf morphological characteristics of fossil leaves quantified using modern climate and canopy leaf characteristics. Fossil assemblages are composed of abscised leaves, and climate may be more accurately determined by using leaves from leaf litter instead of the canopy. To better understand whether taphonomic processes make a difference in this relationship, a north-central Florida woodland was sampled to determine the morphologically based climate estimates from these leaves. Leaves from woody, dicotyledonous plants were collected and identified, then compared using presence/absence data and analyzed using several linear regression equations and the CLAMP data set. Although the majority of standing vegetation was reflected in leaf litter, some inconsistencies were observed, which may reflect plant community structure or sampling technique. Mean annual temperature (MAT) and growing season precipitation (GSP) were estimated from leaf litter morphological characters and living leaves. Overall, values for MAT estimated from litter and living leaves were cooler than actual MATs, although several accurate and high estimates were obtained depending on the predictive method used. Estimated GSP values were higher than actual GSPs. Statistically, no difference was observed between MAT and GSP estimates derived from leaf litter vs. estimates derived from living leaves, with one exception.

16.
Am J Bot ; 92(7): 1141-51, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21646136

RESUMO

The sizes and shapes (physiognomy) of fossil leaves are widely applied as proxies for paleoclimatic and paleoecological variables. However, significant improvements to leaf-margin analysis, used for nearly a century to reconstruct mean annual temperature (MAT), have been elusive; also, relationships between physiognomy and many leaf ecological variables have not been quantified. Using the recently developed technique of digital leaf physiognomy, correlations of leaf physiognomy to MAT, leaf mass per area, and nitrogen content are quantified for a set of test sites from North and Central America. Many physiognomic variables correlate significantly with MAT, indicating a coordinated, convergent evolutionary response of fewer teeth, smaller tooth area, and lower degree of blade dissection in warmer environments. In addition, tooth area correlates negatively with leaf mass per area and positively with nitrogen content. Multiple linear regressions based on a subset of variables produce more accurate MAT estimates than leaf-margin analysis (standard errors of ±2 vs. ±3°C); improvements are greatest at sites with shallow water tables that are analogous to many fossil sites. The multivariate regressions remain robust even when based on one leaf per species, and the model most applicable to fossils shows no more signal degradation from leaf fragmentation than leaf-margin analysis.

17.
Proc Natl Acad Sci U S A ; 100(1): 167-70, 2003 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-12493844

RESUMO

Floras of predominantly wet-soil environments show a greater than expected proportion of toothed leaves, affecting the outcome of leaf physiognomically based temperature estimates. New analyses of foliar physiognomy of plants growing in predominantly wet soils in modern forests suggest that current methods of inferring paleotemperatures from fossil floras yield underestimates of 2.5-10 degrees C. The changes we propose bring terrestrial paleotemperature estimates into agreement with temperatures inferred from other biological and geological proxies and strengthen the use of leaf physiognomy as a method for climate reconstruction.


Assuntos
Ecossistema , Paleontologia , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Estações do Ano , Temperatura , Clima , Folhas de Planta/anatomia & histologia , Solo
18.
Proc Natl Acad Sci U S A ; 100(12): 7141-6, 2003 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12777617

RESUMO

Fossil leaves assigned to the genus Ginkgo are increasingly being used to reconstruct Mesozoic and Tertiary environments based on their stomatal and carbon isotopic characteristics. We sought to provide a more secure basis for understanding variations seen in the plant fossil record by determining the natural variability of these properties of sun and shade leaf morphotypes of Ginkgo biloba trees under the present atmospheric CO2 concentration and a range of contemporary climates in three Chinese locations (Lanzhou, Beijing, and Nanjing). Climate had no major effects on leaf stomatal index (proportion of leaf surface cells that are stomata) but did result in more variable stomatal densities. The effects of climate and leaf morphotype on stomatal index were rather conserved (<1%) and much less than the response of trees to recent CO2 increases. Leaf carbon isotope discrimination (delta) was highest for trees in Nanjing, which experience a warm, moist climate, whereas trees in the most arid site (Lanzhou) had the lowest delta values. Interestingly, the variation in delta shown by leaf populations of trees from China and the United Kingdom was very similar to that of fossil Ginkgo cuticles dating to the Mesozoic and Tertiary, which suggests to us that the physiology of leaf carbon uptake and regulation of water loss in Ginkgo has remained highly conserved despite the potential for evolutionary change over millions of years.


Assuntos
Ginkgo biloba/anatomia & histologia , Evolução Biológica , Carbono/metabolismo , Isótopos de Carbono , China , Clima , Fósseis , Ginkgo biloba/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Luz Solar , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA